山西省吕梁市白家沟中学2021年高一数学理模拟试题含解析_第1页
山西省吕梁市白家沟中学2021年高一数学理模拟试题含解析_第2页
山西省吕梁市白家沟中学2021年高一数学理模拟试题含解析_第3页
山西省吕梁市白家沟中学2021年高一数学理模拟试题含解析_第4页
山西省吕梁市白家沟中学2021年高一数学理模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省吕梁市白家沟中学2021年高一数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若=(x,y),x∈{0,1,2},y∈{-2,0,1),a=(1,-1),则与a的夹角为锐角的概率是____.参考答案:2.若全集,则集合的真子集共有(

)A.个

B.个

C.个

D.个参考答案:C略3.函数y=lg(3﹣x)的定义域为()A.(0,3) B.[0,3) C.(0,3] D.[0,3]参考答案:B【考点】函数的定义域及其求法.【分析】函数y=lg(3﹣x)有意义,只需x≥0且3﹣x>0,解不等式即可得到所求定义域.【解答】解:函数y=lg(3﹣x)有意义,只需x≥0且3﹣x>0,解得0≤x<3,则定义域为[0,3).故选:B.【点评】本题考查函数的定义域的求法,注意运用偶次根式和对数的定义,考查运算能力,属于基础题.4.考察下列每组对象哪几组能够成集合?()(1)比较小的数;(2)不大于10的非负偶数;(3)所有三角形;(4)高个子男生;A.(1)(4)

B.(2)(3)

C.(2)

D.(3)参考答案:B5.

下列判断正确的是(

)A.函数是奇函数;

B.函数是偶函数C.函数是非奇非偶函数

D.函数既是奇函数又是偶函数参考答案:C6.已知等差数列{an}前n项和为Sn,若S15=75,a3+a4+a5=12,则S11=()A.109 B.99 C. D.参考答案:C【考点】85:等差数列的前n项和.【分析】利用等差数列的前n项和公式和通项公式,列出方程组,求出首项和公差,由此能求出S11.【解答】解:∵等差数列{an}前n项和为Sn,S15=75,a3+a4+a5=12,∴,S11=11a1+=11×+=.故选:C.【点评】本题考查等差数列的前11项和的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.7.《算法统宗》是明朝程大位所著数学名著,其中有这样一段表述:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一”,其意大致为:有一七层宝塔,每层悬挂的红灯数为上一层的两倍,共有381盏灯,则塔从上至下的第三层有(

)盏灯.A.14 B.12 C.8 D.10参考答案:B【分析】设第一层有盏灯,则由题意知第一层至第七层的灯的盏数构成一个以为首项,以为公比的等比数列,求得第一层的盏数,由此即可求解,得到答案.【详解】设第一层有盏灯,则由题意知第一层至第七层的灯的盏数构成一个以为首项,以为公比的等比数列,所以七层宝塔的灯的盏数的总数为,解得,所以从上至下的第三层的灯的盏数为盏,故选B.【点睛】本题主要考查了等比数的应用,其中解答中认真审题,得到第一层至第七层的等的盏数构成一个以为首项,以为公比的等比数列是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.8.若为圆的弦AB的中点,则直线AB的方程是(

)A. B.C. D.参考答案:D【分析】圆的圆心为O,求出圆心坐标,利用垂径定理,可以得到,求出直线的斜率,利用两直线垂直斜率关系可以求出直线的斜率,利用点斜式写出直线方程,最后化为一般式方程.【详解】设圆的圆心为O,坐标为(1,0),根据圆的垂径定理可知:,因为,所以,因此直线的方程为,故本题选D.【点睛】本题考查了圆的垂径定理、两直线垂直斜率的关系,考查了斜率公式.9.下列函数中,既是奇函数又是增函数的为(

)A.

B.

C.

D.参考答案:D10.在平面直角坐标系内,与点O(0,0)距离为1,且与点B(-3,4)距离为4的直线条数共有(

)A.条

B.条 C.条

D.条参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.定义在R上的偶函数在(-∞,0]上是增函数,且,则使得不等式成立的取值范围是______________________.参考答案:(-2,1)∪(2,+∞)12.数列满足,则的最小值是

参考答案:;13.在中,角所对的边为,若,且的外接圆半径为,则________.参考答案:或.【分析】利用正弦定理求出的值,结合角的取值范围得出角的值.【详解】由正弦定理可得,所以,,,或,故答案为:或.【点睛】本题考查正弦定理的应用,在利用正弦值求角时,除了找出锐角还要注意相应的补角是否满足题意,考查计算能力,属于基础题.14.如上图,中,,,.在三角形内挖去半圆(圆心在边上,半圆与相切于点,与交于),则图中阴影部分绕直线旋转一周所得旋转体的体积为

参考答案:略15.若函数,则=

.参考答案:略16.设实数x,y满足约束条件,则的最大值为______.参考答案:25【分析】先作出不等式组对应的可行域,再利用的几何意义求的最大值.【详解】实数满足约束条件的可行域如图:的几何意义是可行域内的点与直线的距离的5倍,显然到直线的距离最大,联立得A(2,4),所以所求最大值为5×.故答案为:25.【点睛】本题主要考查线性规划求最值,考查点到直线的距离的应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.17.若正四棱锥的侧棱长为,侧面与底面所成的角是45°,则该正四棱锥的体积是________.参考答案:【分析】过棱锥顶点作,平面,则为的中点,为正方形的中心,连结,设正四棱锥的底面长为,根据已知求出a=2,SO=1,再求该正四棱锥的体积.【详解】过棱锥顶点作,平面,则为的中点,为正方形的中心,连结,则为侧面与底面所成角的平面角,即,设正四棱锥的底面长为,则,所以,在中,∵∴,解得,∴∴棱锥的体积.故答案为:【点睛】本题主要考查空间线面角的计算,考查棱锥体积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数

满足(1)求常数c的值;(2)解不等式+1.参考答案:略19.已知函数f(x)=4tanxsin(﹣x)cos(x﹣)﹣.(1)求f(x)的定义域与最小正周期;(2)讨论f(x)在区间[﹣,]上的单调性.参考答案:【考点】GL:三角函数中的恒等变换应用;H2:正弦函数的图象.【分析】(1)利用三角函数的诱导公式以及两角和差的余弦公式,结合三角函数的辅助角公式进行化简求解即可.(2)利用三角函数的单调性进行求解即可.【解答】解:(1)∵f(x)=4tanxsin(﹣x)cos(x﹣)﹣.∴x≠kπ+,即函数的定义域为{x|x≠kπ+,k∈Z},则f(x)=4tanxcosx?(cosx+sinx)﹣=4sinx(cosx+sinx)﹣=2sinxcosx+2sin2x﹣=sin2x+(1﹣cos2x)﹣=sin2x﹣cos2x=2sin(2x﹣),则函数的周期T=;(2)由2kπ﹣≤2x﹣≤2kπ+,k∈Z,得kπ﹣≤x≤kπ+,k∈Z,即函数的增区间为[kπ﹣,kπ+],k∈Z,当k=0时,增区间为[﹣,],k∈Z,∵x∈[﹣,],∴此时x∈[﹣,],由2kπ+≤2x﹣≤2kπ+,k∈Z,得kπ+≤x≤kπ+,k∈Z,即函数的减区间为[kπ+,kπ+],k∈Z,当k=﹣1时,减区间为[﹣,﹣],k∈Z,∵x∈[﹣,],∴此时x∈[﹣,﹣],即在区间[﹣,]上,函数的减区间为∈[﹣,﹣],增区间为[﹣,].20.设二次函数,对任意实数,有恒成立;数列满足.(1)求函数的解析式和值域;(2)已知,是否存在非零整数,使得对任意,都有恒成立,若存在,求之;若不存在,说明理由.参考答案:(1)

,从而;,即;………12分令,则有且;从而有,可得,所以数列是为首项,公比为的等比数列,从而得,即,所以,所以,所以,所以,.即,所以,恒成立(1)当为奇数时,即恒成立,当且仅当时,有最小值为。(2)当为偶数时,即恒成立,当且仅当时,有最大值为。所以,对任意,有。又非零整数,21.已知函数,(为实常数)(1)若,将写出分段函数的形式,并画出简图,指出其单调递减区间;(2)设在区间上的最小值为,求的表达式。参考答案:(1),

的单调递减区间为和

(2)当时,,,在上单调递减,当时,当时,,(ⅰ

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论