版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省平顶山市舞钢第一高级中学2021年高三数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设是q的A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分敢不必要条件参考答案:B2.函数y=sin2x的图象可能是A. B.C. D.参考答案:D分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令,因为,所以为奇函数,排除选项A,B;因为时,,所以排除选项C,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.3.下列命题中正确的是
(
)(A)命题“x∈R,≤0”的否定是“x∈R,≥0”;
(B)命题“p∧q为真”是命题“p∨q为真”的必要不充分条件;(C)若“,则ab”的否命题为真;
(D)若实数x,y∈[-1,1],则满足的概率为.参考答案:C略4.在区间[0,1]上随机取两个数,,则函数有零点的概率是A.
B.
C.
D.参考答案:D5.已知函数,将图象上所有点的横坐标缩短到原来的倍,纵坐标保持不变,得到函数的图象.若,则的最小值为(
)A. B.π C.2π D.4π参考答案:A【分析】用辅助角公式,将化为正弦型三角函数,利用图像变换关系求出,再结合函数图像和性质,即可求解.【详解】,所以,故的周期为,且.因为,所以,或,所以,所以.故选:A【点睛】本题考查函数恒等变换以及图像变换求函数式,考查三角函数的图像及性质,属于中档题.6.“成等差数列”是“”成立的
(
)A.充分非必要条件;B.必要非充分条件;C.充要条件
D.既非充分也非必要条件参考答案:A7.函数的单调递减区间为 ()A. B.(0,1] C.[1,+∞) D.(0,+∞)参考答案:B略8.已知,则A.
B.2
C
D..4参考答案:D9.曲线在点(1,0)处的切线方程为(
)
A.
B.
C.
D.参考答案:A10.执行如图所示的程序框图,若输入n的值为5,则输出结果为()A.5 B.6 C.11 D.16参考答案:C考点:循环结构.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的s,i的值,当i=6时,不满足条件i≤n,退出循环,输出s的值为11.解答:解:模拟执行程序框图,可得n=5,i=1,s=1满足条件i≤n,s=1,i=2满足条件i≤n,s=2,i=3满足条件i≤n,s=4,i=4满足条件i≤n,s=7,i=5满足条件i≤n,s=11,i=6不满足条件i≤n,退出循环,输出s的值为11.故选:C.点评:本题主要考查了循环结构的程序框图,正确依次写出每次循环得到的s,i的值是解题的关键,属于基本知识的考查.二、填空题:本大题共7小题,每小题4分,共28分11.已知函数f(x)=ln(﹣x)(其中e为自然数对数的底数),则f(tan)+2f(tanπ)+f(tan)=_________.参考答案:212.如右图,椭圆的长轴为A1A2,短轴为B1B2,将坐标平面沿y轴折成一个二面角,使点A2在平面B1A1B2上的射影恰好是该椭圆的左焦点,则此二面角的大小为____.参考答案:13.在如图所示的茎叶图中,甲、乙两组数据的中位数分别是
.参考答案:45,46试题分析:中位数是将数据按大小顺序排列后位于中间的一个或两个的平均数,因此甲、乙两组数据的中位数分别是45,46考点:茎叶图14.(理)已知是正实数,如果不等式组:,表示的区域内存在一个半径为1的圆,则的最小值为
.参考答案:略15.2018年4月4日,中国诗词大会第三季总决赛如期举行,依据规则:本场比赛共有甲、乙、丙、丁、戊五位选手有机会问鼎冠军,某家庭中三名诗词爱好者依据选手在之前比赛中的表现,结合自己的判断,对本场比赛的冠军进行了如下猜测:爸爸:冠军是乙或丁;妈妈:冠军一定不是丙和丁;孩子:冠军是甲或戊.比赛结束后发现:三人中只有一个人的猜测是对的,那么冠军是______.参考答案:丁若冠军是甲或戊,孩子与妈妈判断都正确,不合题意;若冠军是乙,爸爸与妈妈判断都正确,不合题意;若冠军是丙,三个人判断都不正确,不合题意;若冠军是丁,只有爸爸判断正确,合题意,故答案为丁.
16.在中,内角所对的边分别是.已知,,则的值为_______.参考答案:因为,所以,解得,.所以.17.在△ABC中,A、B、C所对的边为a、b、c,,则△ABC面积的最大值为
.参考答案:3∵∴由正弦定理可得∵∴由余弦定理可得.∴∴,当且仅当时取等号.∴面积的最大值为故答案为.
三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数,,(1)若函数f(x)有两个零点,求实数a的取值范围;(2)若a=3,且对任意的x1∈[-1,2],总存在,使g(x1)-f(x2)=0成立,求实数m的取值范围.参考答案:(1)(2)【分析】(1)令t=x2,则t∈[1,3],记,问题转化为函数y=h(t)与y=a有两个交点,利用函数的导数判断函数的单调性求解函数的最小值然后求解实数a的范围.(2)由(1)知f(x)∈[1,2],记A=[1,2],通过当m=0时,当m>0时,当m<0时,分类求实数m的取值范围,推出结果即可.【详解】(1)由题意,函数,,令t=x2,则t∈[1,3],则,要使得函数f(x)有两个零点,即函数y=h(t)与y=a有两个交点,因为,当t∈(1,2)时,<0;当t∈(2,3)时,>0,所以函数h(t)在(1,2)递减,(2,3)递增,从而h(t)min=h(2)=4,,h(1)=5,由图象可得,当时,y=h(t)与y=a有两个交点,所以函数f(x)有两个零点时实数a的范围为:.(2)由(1)知f(x)∈[1,2],记A=[1,2],当m=0时,,显然成立;当m>0时,在[-1,2]上单调递增,所以,记,由对任意的,总存在,使成立,可得,所以且,解得,当m<0时,在[-1,2]上单调递减,所以,所以且,截得,综上,所求实数m的取值范围为.【点睛】本题主要考查导数在函数中的综合应用,以及恒成立问题的求解,着重考查了转化与化归思想、逻辑推理能力与计算能力,对于恒成立问题,通常要构造新函数,利用导数取得函数的最值或值域,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.19.(本题满分14分)已知函数,.(Ⅰ)当时,若直线过点且与曲线相切,求直线的线方程;(Ⅱ)当时,判断方程在区间上有没有实根;(Ⅲ)若时,不等式恒成立,求实数的取值范围.参考答案:(Ⅰ)令切点为,当时,,,,切线的方程为又因直线过点
切线方程为
…5分(Ⅱ)时,令,,在上为增函数又,所以在内无实数根………………10分(Ⅲ)时恒成立,即恒成立,
又,则当时,恒成立,
令,只需小于的最小值,,……11分,,当时,在上单调递减,在的最小值为,
则的取值范围是
……14分20.已知集合().对于,,定义;();A与B之间的距离为.(Ⅰ)当时,设,.若,求;(Ⅱ)(ⅰ)证明:若,且,使,则;(ⅱ)设,且.是否一定,使?说明理由;(Ⅲ)记.若,,且,求的最大值.参考答案:(Ⅰ),或.(Ⅱ)(ⅰ)见解析(ⅱ)不存在,使得.见解析(Ⅲ)的最大值为.【分析】(Ⅰ)由已知的新定义,代值计算即可;(Ⅱ)(ⅰ)由已知新定义,可将已知转化为,使得,其中,所以与同为非负数或同为负数,进而由与绝对值的性质即可得证;(ⅱ)举特例取,,,即可说明不存在;(Ⅲ)由绝对值的性质对,都有,则所求式子.【详解】(Ⅰ)当时,由,得,即.由,得,或.(Ⅱ)(ⅰ)证明:设,,.因为,使,所以,使得,即,使得,其中.所以与同为非负数或同为负数.所以.(ⅱ)设,且,此时不一定,使得.反例如下:取,,,则,,,显然.因为,,所以不存在,使得.(Ⅲ)解法一:因为,设中有项为非负数,项为负数.不妨设时;时,.所以因为,所以,
整理得.所以.因为;又,所以.即.对于,,有,,且,.综上,的最大值为.解法二:首先证明如下引理:设,则有.证明:因为,,所以,即.所以.上式等号成立的条件为,或,所以.对于,,有,,且,.综上,的最大值为.【点睛】本题考查向量与绝对值求和的新定义问题,还考查了绝对值的性质的应用,属于难题.21.已知幂函数在(0,+∞)上单调递增,函数.(Ⅰ)求m的值;(Ⅱ)当时,记f(x),g(x)的值域分别为集合A,B,设命题,命题,若命题p是q成立的必要条件,求实数k的取值范围.参考答案:(Ⅰ)依题意得:或当时,在上单调递减,与题设矛盾,舍去.
……………4分(Ⅱ)当时,,单调递增,,由命题是成立的必要条件,得,.
……………12分22.(本小题满分12分)已知函数f(x)=x|x-a|-2.(1)当a=1时,解不等式f(x)<|x-2|;(2)当x∈(0,1]时,f(x)<x2-1恒成立,求实数a的取值范围.参考答案:解析:(1)a=1时,f(x)<|x-2|,即x|x-1|-2<|x-2|.(*)当x≥2时,由(*)?x(x-1)-2<x-2?0<x<2.又x≥2,∴x∈?;当1≤x<2时,由(*)?x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年建筑安装服务项目提案报告
- 2024-2025学年砚山县数学三上期末质量检测试题含解析
- 上海装修施工合同
- 全国防灾减灾日主题活动总结6篇
- 三年级上册道德与法治第3课《做学习的主人》教学实录教学实录(第二课时)
- 不一样的爱话题作文(15篇)
- 吉林省梅河口市曙光镇中学九年级化学上册 第三单元 课题1 分子和原子教学实录 (新版)新人教版
- 2024年五年级英语上册 Module 4 The natural world Unit 11 Water教学实录 牛津沪教版(三起)
- 第九单元跨学科实践活动8海洋资源的综合利用与制盐教学实录-2024-2025学年九年级化学人教版(2024)下册
- 2023九年级数学下册 第二十七章 相似27.2 相似三角形27.2.1 相似三角形的判定第3课时 相似三角形的判定3教学实录 (新版)新人教版
- 2024年一级注册建筑师理论考试题库ab卷
- 试验检测方案
- 小学数学班级学情分析报告
- IMCA船舶隐患排查表
- 2024年软件开发调试合同样本(二篇)
- 地理月考分析及改进措施初中生
- 乡村篮球比赛预案设计
- 博物馆保安服务投标方案(技术方案)
- 陕西省幼儿教师通识性知识大赛考试题库(含答案)
- 中医师承指导老师学术思想
- 课程设计报告数据库原理与应用样本
评论
0/150
提交评论