![陕西省咸阳市渭城中学2021-2022学年高一数学理测试题含解析_第1页](http://file4.renrendoc.com/view/bb12352454264cb53de26067e2c34ffd/bb12352454264cb53de26067e2c34ffd1.gif)
![陕西省咸阳市渭城中学2021-2022学年高一数学理测试题含解析_第2页](http://file4.renrendoc.com/view/bb12352454264cb53de26067e2c34ffd/bb12352454264cb53de26067e2c34ffd2.gif)
![陕西省咸阳市渭城中学2021-2022学年高一数学理测试题含解析_第3页](http://file4.renrendoc.com/view/bb12352454264cb53de26067e2c34ffd/bb12352454264cb53de26067e2c34ffd3.gif)
![陕西省咸阳市渭城中学2021-2022学年高一数学理测试题含解析_第4页](http://file4.renrendoc.com/view/bb12352454264cb53de26067e2c34ffd/bb12352454264cb53de26067e2c34ffd4.gif)
![陕西省咸阳市渭城中学2021-2022学年高一数学理测试题含解析_第5页](http://file4.renrendoc.com/view/bb12352454264cb53de26067e2c34ffd/bb12352454264cb53de26067e2c34ffd5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省咸阳市渭城中学2021-2022学年高一数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数是(
)A最小正周期为的奇函数
B最小正周期为的偶函数C最小正周期为的奇函数
D最小正周期为的偶函数参考答案:C2.设全集为R,(
)
参考答案:A略3.直线的倾斜角为A.30o
B.60o
C.120o
D.150o参考答案:C4.函数y=xln|x|的大致图象是(
)A. B. C. D.参考答案:C考点:函数的图象.专题:函数的性质及应用.分析:容易看出,该函数是奇函数,所以排除B项,再原函数式化简,去掉绝对值符号转化为分段函数,再从研究x>0时,特殊的函数值符号、极值点、单调性、零点等性质进行判断.解答:解:令f(x)=xln|x|,易知f(﹣x)=﹣xln|﹣x|=﹣xln|x|=﹣f(x),所以该函数是奇函数,排除选项B;又x>0时,f(x)=xlnx,容易判断,当x→+∞时,xlnx→+∞,排除D选项;令f(x)=0,得xlnx=0,所以x=1,即x>0时,函数图象与x轴只有一个交点,所以C选项满足题意.故选:C.点评:函数图象问题就是考查函数性质的问题.不过,除了分析定义域、值域、单调性、奇偶性、极值与最值等性质外,还要注意对特殊点,零点等性质的分析,注意采用排除法等间接法解题5.由确定的等差数列中,当时,序号等于
A.99
B.100
C.96
D.101参考答案:B略6.“非空集合M不是P的子集”的充要条件是
(
)A.
B.C.又D.参考答案:D7.已知A=B={(x,y)︱x∈R,y∈R},从A到B的映射,A中元素(m,n)与B中元素(4,-5)对应,则此元素为
.
参考答案:(5,-1)或(-1,5)略8.圆台侧面的母线长为2a,母线与轴的夹角为30°,一个底面的半径是另一个底面半径的2倍.求两底面的面积之和是()A.3πa2 B.4πa2 C.5πa2 D.6πa2参考答案:C【考点】L5:旋转体(圆柱、圆锥、圆台).【分析】根据相似三角形求出上底面半径和a的关系,再计算两底面积之和.【解答】解:设圆台的母线AA′与圆台的轴OO′交于点S,则∠ASO=30°,设圆台的上底面半径为r,则SA′=2r,OA=2r,SA=4r,∴AA′=SA﹣SA′=4r﹣2r=2r=2a,∴r=a,∴圆台的上下底面积S=πr2+π(2r)2=5πr2=5πa2.故选C.【点评】本题考查了圆台的结构特征,属于基础题.9.下列四个命题,其中m,n,l为直线,α,β为平面①m?α,n?α,m∥β,n∥β?α∥β;②设l是平面α内任意一条直线,且l∥β?α∥β;③若α∥β,m?α,n?β?m∥n;④若α∥β,m?α?m∥β.其中正确的是()A.①② B.②③ C.②④ D.①②④参考答案:C【考点】空间中直线与平面之间的位置关系.【专题】综合题;转化思想;综合法;空间位置关系与距离.【分析】利用空间线面、面面平行的性质定理和判定定理分别分析选择.【解答】解:在长方体ABCD﹣A1B1C1D1中,①若平面AC是平面α,平面A1C1是平面β,直线AD是直线m,A1B1是直线n,显然满足m?α,n?α,m∥β,n∥β,但是α与β相交,不正确;②若平面α内任意一条直线平行于平面β,则平面α的两条相交直线平行于平面β,满足面面平行的判定定理,所以α∥β;故正确③若平面AC是平面α,平面BC1是平面β,直线AD是直线m,点E,F分别是AB,CD的中点,则EF∥AD,EF是直线n,显然满足α∥β,m?α,n?β,但是m与n异面,不正确;④由面面平行结合线面平行的定义可得m∥β,正确,故选:C.【点评】本题考查了空间线面、面面平行的性质定理和判定定理的运用判断面面关系、线面关系;关键是熟练掌握有关的定理.10.若,则()A.1 B.-1 C.3 D.-3参考答案:D试题分析:原式可化为,上下同除以得,求得,故选D.二、填空题:本大题共7小题,每小题4分,共28分11.下列几个命题:①方程的有一个正实根,一个负实根,则;②函数是偶函数,但不是奇函数;③函数的值域是,则函数的值域为;④设函数定义域为R,则函数与的图象关于轴对称;⑤一条曲线和直线的公共点个数是,则的值不可能是1.其中正确的有___________________.参考答案:12.若是第二象限角,化简=___________参考答案:13.已知F1、F2分别为椭圆的左、右焦点,椭圆上点M的横坐标等于右焦点的横坐标,其纵坐标等于短半轴长的,则椭圆的离心率为.参考答案:【考点】椭圆的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】设出椭圆的标准方程,求出椭圆上点M的横坐标等于右焦点的横坐标时M的纵坐标,利用纵坐标等于短半轴长的,建立方程,即可求得椭圆的离心率.【解答】解:设椭圆的标准方程为(a>b>0)当x=c时,y=±∵椭圆上点M的横坐标等于右焦点的横坐标,其纵坐标等于短半轴长的,∴∴∴=a∴e==故答案为:.【点评】本题考查椭圆的几何性质,考查学生的计算能力,属于基础题.14.若不等式的解集是,则
;参考答案:;15.已知集合A={x|y=},B={y=|y=﹣x2+1},则A∩B=
.参考答案:?【考点】交集及其运算.【专题】集合.【分析】求出A中x的范围确定出A,求出B中y的范围确定出B,找出两集合的交集即可.【解答】解:由A中y=,得到x﹣2≥0,即x≥2,∴A=[2,+∞),由B中y=﹣x2+1≤1,得到B=(﹣∞,1],则A∩B=?,故答案为:?.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.16.函数的零点是____________.参考答案:1,-4【分析】令f(x)=0,即x2+3x-4=0,解出即可.【详解】令f(x)=0,即x2+3x-4=0,解得:x=-4,x=1.【点睛】本题考查了函数的零点问题,是基础题,关键是准确掌握零点的定义.17.函数(常数)为偶函数且在是减函数,则
.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图所示,正四棱锥P﹣ABCD中,侧棱PA与底面ABCD所成的角的正切值为. (1)求侧面PAD与底面ABCD所成的二面角的大小; (2)若E是PB的中点,求异面直线PD与AE所成角的正切值; (3)问在棱AD上是否存在一点F,使EF⊥侧面PBC,若存在,试确定点F的位置;若不存在,说明理由. 参考答案:【考点】与二面角有关的立体几何综合题;异面直线及其所成的角;直线与平面垂直的判定. 【专题】计算题. 【分析】(1)取AD中点M,设PO⊥面ABCD,连MO、PM,则∠PMO为二面角的平面角,设AB=a,则可利用tan∠PAO表示出AO和PO,进而根据求得tan∠PMO的值,则∠PMO可知. (2)连OE,OE∥PD,∠OEA为异面直线PD与AE所成的角.根据AO⊥BO,AO⊥PO判断出AO⊥平面PBD,进而可推断AO⊥OE,进而可知进而可知∠AEO为直线PD与AE所成角,根据勾股定理求得PD,进而求得OE,则tan∠AEO可求得. (3)延长MO交BC于N,取PN中点G,连EG、MG.先证出平面PMN和平面PBC垂直,再通过已知条件证出MG⊥平面PBC,取AM中点F,利用EG∥MF,推断出,可知EF∥MG.最后可推断出EF⊥平面PBC.即F为四等分点. 【解答】解:(1)取AD中点M,设PO⊥面ABCD,连MO、PM,则∠PMO为二面角的平面角,∠PAO为侧棱PA与底面ABCD所成的角,, 设,PO=AOtan∠PAO=, ∴∠PMO=60°. (2)连OE,OE∥PD,∠OEA为异面直线PD与AE所成的角. . ∵ ∴ (3)延长MO交BC于N,取PN中点G,连EG、MG. . 又 取AM中点F,∵EG∥MF∴ ∴EF∥MG. ∴EF⊥平面PBC. 即F为四等分点 【点评】本题主要考查了二面角及其度量,解题的关键是通过巧妙设置辅助线找到二面角. 19.已知函数f(x)=Asin(ωx+φ)A>0且ω>0,0<φ<的部分图象,如图所示.(Ⅰ)求函数f(x)的解析式;(Ⅱ)若方程f(x)=a在上有两个不同的实根,试求a的取值范围.
参考答案:
解:(Ⅰ)由图象易知函数f(x)的周期为T=4×=2π,A=1,所以ω=1.-----3分法一由图可知此函数的图象是由y=sinx的图象向左平移个单位得到的,故φ=,所以函数解析式为f(x)=sin.-----------6分法二由图象知f(x)过点.则sin=0,∴-+φ=kπ,k∈Z.∴φ=kπ+,k∈Z,又∵φ∈,∴φ=,∴f(x)=sin.(Ⅱ)方程f(x)=a在上有两个不同的实根等价于y=f(x)与y=a的图象在上有两个交点,在图中作y=a的图象,如图为函数f(x)=sin在上的图象,当x=0时,f(x)=,当x=时,f(x)=0,由图中可以看出有两个交点时,a∈∪(-1,0).------12分
略20.(14分)设平面内有四个向量、、、,满足=﹣,=2﹣,⊥,||=||=1.(1)用、表示、;(2)若与的夹角为θ,求cosθ的值.参考答案:考点: 数量积表示两个向量的夹角;数量积判断两个平面向量的垂直关系.专题: 平面向量及应用.分析: (1)由题意解关于和的方程组可得;(2)由(1)知结合向量的数量积和模长公式可得及||和||,代入向量的夹角公式可得.解答: (1)由题意可得=﹣,=2﹣,联立解关于和的方程组可得=,=2+;(2)由(1)知=,=2+,又⊥,||=||=1,∴=()?(2+)=2+3+=3,由模长公式可得||===,||===,∴cosθ===.点评: 本题考查平面向量的数量积和模长公式,以及向量的夹角公式,属基础题.21.直四棱柱,底面为菱形,,(1)求证:;
(2)若,求四面体的体积.
参考答案:解:(1)连结BD交AC于O.
四边形ABCD为菱形AC⊥BD,直四棱柱ABCD-A1B1C1D1DD1⊥平面ABCDDD1⊥AC,又DD1交BD于D,则AC⊥平面BB1D1D,又BD1平面BB1D1D,则AC⊥BD1.-----6分(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幼儿园寒假安全教育活动方案
- 2025年橡塑改性弹性体项目合作计划书
- 小学语文作文教学方法的创新研究
- 志愿书和申请书
- 申请继续留任的申请书
- 教育科学规划课题申请书
- 电梯安装与维修工理论过关检测练习题大全附答案
- 小学三年级数学因数中间或末尾有零的乘法竞赛练习例题大全附答案
- 小学二年级数学三位数加减三位数计算质量测试训练题带答案
- 党史大学生创业项目
- 塑胶件喷油作业指导书
- 人员安全行为观察管理制度
- Pt催化剂ECSA计算方法
- 汽车运行材料ppt课件(完整版)
- GB∕T 1732-2020 漆膜耐冲击测定法
- 我国油菜生产机械化技术(-119)
- 2022《化工装置安全试车工作规范》精选ppt课件
- 吞咽障碍筛查表
- 汽车系统动力学-轮胎动力学
- 艾琳歆日内交易2011-2月至4月份图表
- 中国民航国内航空汇编航路314系列航线
评论
0/150
提交评论