版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省黄冈市艺术中学2021年高二数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知椭圆+=1(a>b>0),F1,F2为椭圆的左.右焦点,M是椭圆上任一点,若?的取值范围为[﹣3,3],则椭圆方程为()A. B. C.+=1 D.+y2=1参考答案:A【考点】椭圆的简单性质.【分析】设M(m,n),F1(﹣c,0),F2(c,0),运用向量的数量积的坐标表示,结合椭圆上的点和原点的距离的最值,即可得到a,b的值,进而得到所求方程.【解答】解:设M(m,n),F1(﹣c,0),F2(c,0),=(﹣c﹣m,﹣n),=(c﹣m,﹣n),?=(﹣c﹣m)(c﹣m)+n2=m2+n2﹣c2,由m2+n2的几何意义为点(0,0)与点M的距离的平方,即有m2+n2的最大值为a2,最小值为b2,则?的取值范围是[b2﹣c2,a2﹣c2],由题意可得b2﹣c2=﹣3,a2﹣c2=3,b2+c2=a2,求得b2=3,a2=9,c2=6,可得椭圆的方程为:故选A.2.下列结论正确的是()A.若直线a∥平面α,直线b⊥a,b?平面β,则α⊥βB.若直线a⊥直线b,a⊥平面α,b⊥平面β,则α⊥βC.过平面外的一条直线有且只有一个平面与已知平面垂直D.过平面外一点有且只有一个平面与已知平面垂直参考答案:B【考点】空间中直线与平面之间的位置关系;平面与平面之间的位置关系.【分析】对于A判断α,β的关系,判断正误;对于B,判断是否满足平面与平面垂直的判定定理即可判断正误.对于C说明,直线与平面的关系,判断正误;对于D,利用平面与平面垂直的平面判断正误即可.【解答】解:对于A,若直线a∥平面α,直线b⊥a,b?平面β,如果b∥β,则α∥β,所以A不正确;对于B,若直线a⊥直线b,a⊥平面α,b⊥平面β,则α⊥β,满足平面与平面垂直的判定定理,所以B正确;对于C,过平面外的一条直线有且只有一个平面与已知平面垂直,如果这些与平面垂直,则有无数个平面与已知平面垂直,所以C不正确;对于D,过平面外一点有且只有一个平面与已知平面垂平行,不是垂直,平面的平面有无数个.故选:B.3.—个几何体的三视图及其尺寸如右图所示,则该几何体的表面积为(
)A.
B.
C.
D.参考答案:C略4.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,其中俯视图由两个半圆和两条线段组成,则该几何体的表面积为()A. B. C. D.参考答案:B【分析】根据三视图可确定几何体为一个底面半径为的半圆柱中间挖去一个底面半径为的半圆柱;依次计算出上下底面面积、大圆柱和小圆柱侧面积的一半以及轴截面的两个矩形的面积,加和得到结果.【详解】由三视图可知,几何体为一个底面半径为的半圆柱中间挖去一个底面半径为的半圆柱几何体表面积:本题正确选项:【点睛】本题考查几何体表面积的求解问题,关键是能够通过三视图确定几何体,从而明确表面积的具体构成情况.5.已知点,则它的极坐标是(
)A.
B.
C.
D.参考答案:C设P的极坐标为,因为则,由在第四象限可知所以P的极坐标为故C选项是正确的.6.若关于的方程在上有根,则实数的取值范围是
(
)A. B.
C. D.参考答案:C7.(5分)直线xcosα+y+2=0的倾斜角范围是()A.[,)∪(,]B.[0,]∪[,π)C.[0,]D.[,]参考答案:B【考点】:直线的倾斜角.【专题】:计算题.【分析】:本题考查的知识点是直线的斜率与倾斜角之间的转化关系,由直线的方程xcosα+y+2=0,我们不难得到直线的斜率的表达式,结合三角函数的性质,不得得到斜率的取值范围,再根据斜率与倾斜角的关系,进一步可以得到倾斜角的取值范围.解:设直线的倾斜角为θ,则tanθ=﹣cosα.又﹣1≤cosα≤1,∴﹣≤tanθ≤.∴θ∈[0,]∪[,π).故选B【点评】:若tanθ1=k1,tanθ2=k2,直线l的斜率为k,则l的斜率k与倾斜角θ的关系为:①若0<k1<k<k2,0°<θ1<θ<θ2<90°;②若k1<k<k2<0,90°<θ1<θ<θ2<180°;③若k1<k<k2,(k1?k2<0),θ2<θ<90°或θ1<θ<180°;8.已知x、y的取值如下表所示,若y与x线性相关,且,则=____x0134y2.24.34.86.7
参考答案:2.69.已知双曲线的离心率,则其渐近线方程为(
)A.
B.
C.
D.
参考答案:C10.通过随机询问50名性别不同的大学生是否爱好某项运动,得到如下的列联表,由得参照附表,得到的正确结论是
爱好不爱好合计男生20525女生101525合计302050
0.0100.0050.001k6.6357.87910.828A.有99.5%以上的把握认为“爱好该项运动与性别有关”B.有99.5%以上的把握认为“爱好该项运动与性别无关”C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”参考答案:A【分析】将的值对照附表进行判断,即可得出相关的结论,注意对应的是犯错误的概率.【详解】因为8.333>7.879,由上表知7.879上面为0.005,所以,有99.5%以上的把握认为“爱好该项运动与性别有关”,或在犯错误的概率不超过的前提下,认为“爱好该项运动与性别有关”,故选A.【点睛】主要考查了独立性检验,属于基础题.这类型题的关键是会根据附表进行判断,的值越大,犯错误的概率越小,反之越大,同时对应的正确的概率越大,反之越小.二、填空题:本大题共7小题,每小题4分,共28分11.在△ABC中,角A,B,C的对边分别是a,b,c,,若,则△ABC的周长为__________.参考答案:由题意,所以,且由余弦定理,得,所以所以的周长为.点睛:本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值.利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.
12.设则与的夹角=
参考答案:13.函数的定义域为
.参考答案:14.(5分)若,则x=
.参考答案:利用组合数的性质易得若C18x=C183x﹣6,则:x=3x﹣6或x+3x﹣6=18,则x=3或6故答案为:3或6.由组合数公式,由C18x=C183x﹣6,找到其与x与3x﹣6的关系,即可得答案.15.双曲线ky2-8kx2=8的一个焦点坐标是(0,3),则k的值为__________.参考答案:略16.一物体在力
(单位:N)的作用下,沿与力F相同的方向,从处运动到处.(单位:m).力所作的功为
参考答案:40略17.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方向,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取名学生.参考答案:60【考点】分层抽样方法.【专题】概率与统计.【分析】先求出一年级本科生人数所占总本科生人数的比例,再用样本容量乘以该比列,即为所求.【解答】解:根据分层抽样的定义和方法,一年级本科生人数所占的比例为=,故应从一年级本科生中抽取名学生数为300×=60,故答案为:60.【点评】本题主要考查分层抽样的定义和方法,利用了总体中各层的个体数之比等于样本中对应各层的样本数之比,属于基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(A卷)在二项式(展开式中,求:(1)二项式系数之和;(2)各项系数之和。参考答案:(2)设,令,得
19.(14分)如图,四棱锥中,点在线段上。
(2)若求四棱锥的体积
参考答案:略20.在△ABC中,角A,B,C的对边分别是a,b,c,已知.(1)求的值;(2)若,求角C的大小.参考答案:(1)3;(2)【分析】(1)由正弦定理得,(sinA-3sinB)cosC=sinC(3cosB-cosA),即sin(A+C)=3sin(C+B),即sinB=3sinA。(2)(2)由(1)知b=3a,∵c=a,∴cosC====,得解【详解】(1)由正弦定理得,(sinA-3sinB)cosC=sinC(3cosB-cosA),∴sinAcosC+cosAsinC=3sinCcosB+3cosCsinB,即sin(A+C)=3sin(C+B),即sinB=3sinA,∴=3.(2)由(1)知b=3a,∵c=a,∴cosC====,∵C∈(0,π),∴C=.【点睛】利用正余弦定理化简三角恒等式,主要思想是“统一边角关系”。正弦定理应用于边角的齐次式,可直接求角度。对于二次或以上的关于边的表达式一般用余弦定理整理化简。21.已知的展开式前三项中的的系数成等差数列.(1)求展开式中所有的的有理项;(2)求展开式中系数最大的项.参考答案:解:(1)展开式前三项的系数分别为.由题设可知:解得:n=8或n=1(舍去).
当n=8时,=.据题意,4-必为整数,从而可知必为4的倍数,而0≤≤8,∴=0,4,8.故的有理项为:,,.(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 44895-2024市场和社会调查调查问卷编制指南
- 2024年度建筑工程合同:办公楼装修工程的设计与施工
- 统编人教版六年级语文上册《语文园地四》精美课件
- 2024年度技术转让合同标的的技术改进要求2篇
- 2024年度给水工程分包合同(建筑)3篇
- 劳动合同法的心得体会
- 2024年度版权质押合同:著作权抵押融资具体规定3篇
- 资产抵押合同
- 学校课件-教案包
- 《商务统计素材》课件
- 跨文化管理与沟通
- 科普展馆设计理念
- 《机器人手臂》课件
- 如何正确对待考试成绩课件
- 食品科技2024年食品行业的科技突破
- MOOC Academic Writing(学术英语写作)-东南大学 中国大学慕课答案
- 2024年上海电工操作证考试题库低压电工证考试题(全国通用)
- 作业现场化学品安全告知卡
- 0-3岁健康知识讲座
- 小学生主题班会通用版《我和手机有个约定》课件
- 【小学心理健康教育分析国内外文献综述4100字】
评论
0/150
提交评论