纳米纤维概述_第1页
纳米纤维概述_第2页
纳米纤维概述_第3页
纳米纤维概述_第4页
纳米纤维概述_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

纳米纤维概述1.纳米纤维的概念纳米纤维是指直径处在纳米尺度范围(1~100nm)内的纤维,根据其组成成分可分为聚合物纳米纤维、无机纳米纤维及有机/无机复合纳米纤维。纳米纤维具有孔隙率高、比表面积大、长径比大、表面能和活性高、纤维精细程度和均一性高等特点,同时纳米纤维还具有纳米材料的一些特殊性质,如由量子尺寸效应和宏观量子隧道效应带来的特殊的电学、磁学、光学性质[[]刘锦淮,黄行九等编.纳米敏感材料与传感技术.北京,科学出版社,]。纳米纤维主要应用在分离和过滤、生物及医学治疗、电池材料[]刘锦淮,黄行九等编.纳米敏感材料与传感技术.北京,科学出版社,2.纳米纤维的制备方法随着纳米纤维材料在各领域应用技术的不断发展,纳米纤维的制备技术也得到了进一步开发与创新。到目前为止,纳米纤维的制备方法主要包括化学法、相分离法、自组装法和纺丝加工法等。而纺丝加工法被认为是规模化制备高聚物纳米纤维最有前景的方法,主要包括静电纺丝法、双组份复合纺丝法、熔喷法和激光拉伸法等。静电纺丝法静电纺丝法是近年来应用最多、发展最快的纳米纤维制备方法[[]Woan,.;Scheffler,.;Bell,.;Sigmund,.,EleetrospinningofnanofiberchevrelphaseofMaterialsChemistry2011,21(24),8537-8539.-[]Tajima,T.;Ueno,S.;Yabu,N.;Sukigara,S.;Ko,F.,FabricationandcharacterizationofPoly-gamma-glutamicacidnanofiber.JournalofAPPliedPolymerScience2011,122(1),[]Woan,.;Scheffler,.;Bell,.;Sigmund,.,EleetrospinningofnanofiberchevrelphaseofMaterialsChemistry2011,21(24),8537-8539.[]Tajima,T.;Ueno,S.;Yabu,N.;Sukigara,S.;Ko,F.,FabricationandcharacterizationofPoly-gamma-glutamicacidnanofiber.JournalofAPPliedPolymerScience2011,122(1),150-158.[]Nguyen,andCharacterizationofnanofiberwebsofchitosan/Poly(vinylalcohol)blendsincorporatedwithsilvernanoparticles.JournalofMateriaIsScience2011,46(20),6525-6537.双组份复合纺丝法双组份复合纺丝法制备超细纤维主要以海岛型和裂片型复合纤维为主[[]Cheng,.;Hsu,.;Kao,.,CarbonnanofibersPreParedbyanovelco-extrusionandmelt-spinningofPhenolformaldehyde-basedcore/sheathpolymerblends.JournalofMaterialsScience2011,46(6),1870-1876.-[]Ochi,T.,TheInvestigationofnanofibersbymelt-spinning.Sen-IGakkaishi2007,63(12),423-425.[]Lv,X.;Li,G.;Zhang,L.;Yang,.;Jin,.;Jiang,.,CarbonnanofiberspreparedbyspinningofpolymerblendsandpermittivityofCNFscomposites.ProceedingsoftheFiberSociety2009SpringConference,VolsI2009,870-872.],其原理是将两种聚合物经特殊设计的分配板和喷丝板纺丝,制备海岛型或裂片型的复合纤维。将海岛型复合纤维中的“海”组份利用溶剂溶解去除或者将裂片型复合纤维进一步裂解后,即得到超细纤维。双组份复合纺丝法的关键技术是喷丝板的设计,选择不同规格的喷丝板,能够制备得到不同形态和尺寸的超细纤维[[]章金兵;许民;龙小艺,纳米纤维的研究进展.江西化工2004,03,24-30.]。Fedorova等[[]Fedorova,N.;Pourdeyhimi,B.,Highstrengthnylonmicro-andnanofiberbasednonwovensviaspunbonding.JournalofAppliedPolymerScience2007,104(5),3434-3442.]以PA6为“岛”,PLA为“海”,利用复合纺丝法制备得到PA6/PLA复合纤维,然后选择溶剂将作为“海[]Cheng,.;Hsu,.;Kao,.,CarbonnanofibersPreParedbyanovelco-extrusionandmelt-spinningofPhenolformaldehyde-basedcore/sheathpolymerblends.JournalofMaterialsScience2011,46(6),1870-1876.[]Ochi,T.,TheInvestigationofnanofibersbymelt-spinning.Sen-IGakkaishi2007,63(12),423-425.[]Lv,X.;Li,G.;Zhang,L.;Yang,.;Jin,.;Jiang,.,CarbonnanofiberspreparedbyspinningofpolymerblendsandpermittivityofCNFscomposites.ProceedingsoftheFiberSociety2009SpringConference,VolsI2009,870-872.[]章金兵;许民;龙小艺,纳米纤维的研究进展.江西化工2004,03,24-30.[]Fedorova,N.;Pourdeyhimi,B.,Highstrengthnylonmicro-andnanofiberbasednonwovensviaspunbonding.JournalofAppliedPolymerScience2007,104(5),3434-3442.海岛型纺丝法要求设备精度比较高,要求海与岛组分要在同一个轴向上,而且海的组分的聚合物溶出也影响纤维成型的品质。但海岛纺丝机成本较高、较复杂,匹配的海、岛纤维也不易找寻,目前为止还无法大批量生产。熔喷法熔喷技术是规模化生产超细纤维的重要方法[[]Qian,.;Zheng,.;Zhang,H.;Kang,[]Qian,.;Zheng,.;Zhang,H.;Kang,.,Themethodofproducingnanomaterialsandmeltblownnonwovenscomposites.AdvancesinComposites,Parts1and22011,150-151,667-672.[]Ellison,.;Phatak,A.;Giles,.;Macosko,.;Bates,.,Meltblownnanofibers:Fiberdiemeterdistributionsandonsetoffiberbreakup.Polymer2007,48(20),6180-6180.[]Ellison,.;Phatak,A.;Giles,.;Macosko,.;Bates,.,Meltblownnanofibers:Fiberdiemeterdistributionsandonsetoffiberbreakup.Polymer2007,48(11),3306-3316.熔喷法制备超细纤维技术的关键在于如何进一步减小所获纤维的尺寸。最直接降低纤维尺寸的方法是减少聚合物熔体的喂入速率,但是这个方法只能将纤维的直径减少到一定范围内,并且会影响纤维的生产率。Ellison等[NOTEREF_Ref7\h12]研究表明可利用熔喷技术生产直径为几百纳米的聚合物纤维。他们利用特殊的模头,通过熔喷技术制备得到直径为250nm的PP纳米纤维;同时还利用熔喷技术制备得到包含600个“岛”的海岛复合纤维,去除基体后所获纳米纤维的直径为50nm。激光拉伸法随着纳米纤维在各领域应用的不断发展,纳米纤维制备新技术和新方法不断涌现[[]Suzuki,A.;Shimizu,R.,Biodegradablepoly(glycolicacid)nanofiberpreparedbyCO2lasersupersonicdrawing.JournalofAPPliedPolymerScience2011,121(5),3078-3084.-[]Dieste,O.;Quintero,F.;Pou,J.;Lusquinos,F.;Riveiro,A.,Influenceoftheworkingconditionsonnanofiberdiametersobtainedbylaserspinning.AppliedPhysicsA-MaterialsScience&Proeessing2011,104(4),1217-1222.[]Li,S.;Jiang,.;Xu,.;George,.,Invisiblecavityofapolymericnanofiberlaser.JournalofPhysicalChemistryC2011,115(35),.],Suzuki等[[]Suzuki,A.;Yamada,Y.,Poly(ethylene-2,6-naphthalate)nanofiberpreparedbycarbondioxidelasersupersonicdrawing.JournalofAPPliedPolymerSeience2010,116(4),1913-1919.-[]Suzuki,A.;Arino,K.,Poly(ethyleneterephthalate)nanosheetspreparedbyCO2-lasersupersonicmulti-drawing.Polymer2010,51(8),1830-1836.[]Suzuki,A.;Tanizawa,K.,Poly(ethyleneterephthalate)nanofiberspreparedbyCO2lasersupersonicdrawing.Polymer2009,50(3),913-921.[]Suzuki,A.;Aoki,K.,Biodegradablepoly(L-lacticacid)nanofiberpreparedbyacarbondioxidelasersupersonicdrawing.EuropeanPolymerJournal2008,44(8),2499-2505.]提出一种CO2激光超声波拉伸法,即利用CO2激光照射纤维的同时在超声波条件下对其进行拉伸,产生约为105倍的拉伸比。由于纤维受到连续的拉伸作用,因此制备所得纳米纤维为连续长丝。此方法在制备纳米纤维的过程中不需要任何溶剂或第二组分的去除,并且不需要结合其他工艺,因此其方法简单且易于操作,可用于制备多种聚合物纳米纤维,如PLLA、PGA、PEN、PET等。Nakata等[[]Nakata,K.;Fujii,K.;Ohkoshi,Y.;Gotoh,Y.;Nagura,M.;Numata,M.;Kamiyama,M.,Poly(ethyleneterephthalate)nanofibersmadebysea-island-typeconjugatedmeltspinningandlaser-heatedflowdrawing.MacromolecularRapidCommunications2007,28(6),792-795.]通过复合纺丝法制备得到PA6/PET海岛复合纤维,利用CO2激光加热牵伸并去除海组分PA[]Suzuki,A.;Shimizu,R.,Biodegradablepoly(glycolicacid)nanofiberpreparedbyCO2lasersupersonicdrawing.JournalofAPPliedPolymerScience2011,121(5),3078-3084.[]Dieste,O.;Quintero,F.;Pou,J.;Lusquinos,F.;Riveiro,A.,Influenceoftheworkingconditionsonnanofiberdiametersobtainedbylaserspinning.AppliedPhysicsA-MaterialsScience&Proeessing2011,104(4),1217-1222.[]Li,S.;Jiang,.;Xu,.;George,.,Invisiblecavityofapolymericnanofiberlaser.JournalofPhysicalChemistryC2011,115(35),.[]Suzuki,A.;Yamada,Y.,Poly(ethylene-2,6-naphthalate)nanofiberpreparedbycarbondioxidelasersupersonicdrawing.JournalofAPPliedPolymerSeience2010,116(4),1913-1919.[]Suzuki,A.;Arino,K.,Poly(ethyleneterephthalate)nanosheetspreparedbyCO2-lasersupersonicmulti-drawing.Polymer2010,51(8),1830-1836.[]Suzuki,A.;Tanizawa,K.,Poly(ethyleneterephthalate)nanofiberspreparedbyCO2lasersupersonicdrawing.Polymer2009,50(3),913-921.[]Suzuki,A.;Aoki,K.,Biodegradablepoly(L-lacticacid)nanofiberpreparedbyacarbondioxidelasersupersonicdrawing.EuropeanPolymerJournal2008,44(8),2499-2505.[]Nakata,K.;Fujii,K.;Ohkoshi,Y.;Gotoh,Y.;Nagura,M.;Numata,M.;Kamiyama,M.,Poly(ethyleneterephthalate)nanofibersmadebysea-island-typeconjugatedmeltspinningandlaser-heatedflowdrawing.MacromolecularRapidCommunications2007,28(6),792-795.3.纳米纤维的应用由于纳米纤维具有独特性能,其已成为材料科学领域研究的重点之一。纳米纤维应用在复合材料增强、过滤、组织工程、药物缓释、传感等领域的研究已取得了丰硕的成果。过滤材料过滤材料在原料或产品分离提纯、空气及水体净化、废弃物排放前处理等工业生产环节发挥着重要的作用。在现代生物、医药等领域的快速发展中,对过滤材料也提出新的需求。如对直径在微米和纳米级的粒子有很好的过滤效果,则要求过滤材料的通道和空隙结构必须与过滤对象的粒径相配对,而静电纳米纤维是制备高效过滤介质最直接有效的方法之一。静电纺丝纳米纤维膜孔径在数十纳米到几微米间变化,孔隙率高,而且具有连贯的孔洞结构,具有良好的空气通透性和对目的物的截留吸附性能。Wang等[[]WangHX,DingJ.Polypyrrole-coatedelectrospunnanofibrousemembranesforrecoveryofAu(III)fromaqueoussolution.JournalofMembraneScience,2007,303:119-125.]通过静电纺聚偏(二)氟乙烯-六氟丙烯(PVdF-HFP)得到平均直径在500nm左右的纳米纤维,在其表面涂敷聚吡咯,对滤液中的金离子有很好的吸附性能。Ma等[[]MaZW,MasaYK,RamakrIS.ImmobizlizationofcibacronblueF3GAonelectrospunpolysulphoneultrafinefibersurfacestowardsdevelopinganaffinitymembraneforalbuminadsorption.JournalofMembraneScience,2006,282:237-244.][]WangHX,DingJ.Polypyrrole-coatedelectrospunnanofibrousemembranesforrecoveryofAu(III)fromaqueoussolution.JournalofMembraneScience,2007,303:119-125.[]MaZW,MasaYK,RamakrIS.ImmobizlizationofcibacronblueF3GAonelectrospunpolysulphoneultrafinefibersurfacestowardsdevelopinganaffinitymembraneforalbuminadsorption.JournalofMembraneScience,2006,282:237-244.[]Chen,P.;Liang,.;Lv,.;Zhu,.;Yao,.;Yu,.,Carbonaceousnanofibermembranefonctionalizedbybeta-CycbdextrizlsformoIecularfiltration.AcsNano2011,5(7),5928-5935.组织工程当纤维直径小于或相当于动物体细胞直径时,细胞可粘附在纤维上并沿纤维生长。近年来,纳米纤维膜以其巨大的细胞外基质仿生潜能,被认为是一种很好的组织工程中细胞培养的支架材料[[]BolandED,WnekGE,SimpsonDG.Tailoringtissueengineeringscaffoldusingelectrostaticprocessingtechniques:astudyofpoly(glycolicacid)electrospinning.Journalofmacromolecularscience-pureandappliedchemistry2001,38:1231-1243]。ZongXH等[[]ZongXH,BienH,ChungCY.Electrospunfine-texturedscaffoldsforhearttissueconstructs.Biomaterials2005,26:5330-5338]认为静电纺丝技术制得的具有三维结构的纳米纤维膜比表面积大、孔隙率高,纳米纤维直径尺寸与体内许多细胞相当,能够负载生长因子并诱导细胞粘附、增殖和分化,对于体外细胞培养,以及模拟细胞外基质构造具有特殊优势。KyongSR等人[[]KyongSR,LimJ,GeneL.Electrospinningofcollagennanofiberseffectsonthebehaviorofnormalhumankeratinocytesandearlystagewoundhealing.Biomaterials2006,27:1452-1461]将胶原蛋白溶解在HFIP中,经过静电纺丝获得纳米纤维,戊二醛交联后再进行细胞外基质蛋白仿生修饰,用于人表皮细胞和口腔细胞的培养,并在纤维轴向上取向生长。Park等[[]Park,.;Kim,.;Park,M.;Lee,.;[]BolandED,WnekGE,SimpsonDG.Tailoringtissueengineeringscaffoldusingelectrostaticprocessingtechniques:astudyofpoly(glycolicacid)electrospinning.Journalofmacromolecularscience-pureandappliedchemistry2001,38:1231-1243[]ZongXH,BienH,ChungCY.Electrospunfine-texturedscaffoldsforhearttissueconstructs.Biomaterials2005,26:5330-5338[]KyongSR,LimJ,GeneL.Electrospinningofcollagennanofiberseffectsonthebehaviorofnormalhumankeratinocytesandearlystagewoundhealing.Biomaterials2006,27:1452-1461[]Park,.;Kim,.;Park,M.;Lee,.;Lee,.;Park,.;Yoon,.;Choy,.,Polymericnanofibercoatedesophagealstentforsustaineddeliveryofananticancerdrug.MacromolecularResearch2011,19(11),1210-1216.[]Mackie,.;Blond,Invitrocharacterizationofanelectroactivecarbon-nanotubebasednanofiberscaffoldfortissueengineering.MacromolecularBioscience2011,11(9),1272-1282.药物缓释药物缓释系统是为了在较长时间内维持药物有效浓度,通过改变药剂结构,使药物在预定时间内释放于相应的作用环境中,提高药物的稳定性和有效利用率,降低药物的毒副作用,减少服药次数,减轻患者的痛苦[[]YangJ.Progressinbiodegradablepolymernanofibersasdrugdeliverysystems.ChemicalIndustryTimes,2010,24(3):33-37][]YangJ.Progressinbiodegradablepolymernanofibersasdrugdeliverysystems.ChemicalIndustryTimes,2010,24(3):33-37静电纺丝选材十分灵活,是可直接生产纳米尺寸药物颗粒的方法,可将很多药物添加在适当的溶液中进行静电纺丝。Xu等[[]XuXL,ChenXS,MaPA.Thereleasebehaviorofdoxorubicinhydrochloridefrommedicatedfiberspreparedbyemulsion-electrospinning.EuropeanJournalofPharmaceuticsandBiopharmaceutics,2008,70:165-170]采用乳液电纺方法制备了含盐酸阿霉素的纳米纤维,其油相是PEG-PLLA共聚物的氯仿溶液,水相是含盐酸阿霉素水溶液。制得的复合纳米纤维表面光滑,无药物晶体。荧光显微发现,该纳米纤维具有核-壳型结构。体外降解实验结果表明,该复合纳米纤维具有良好的可控缓释性能。SongBT等[[]XuXL,ChenXS,MaPA.Thereleasebehaviorofdoxorubicinhydrochloridefrommedicatedfiberspreparedbyemulsion-electrospinning.EuropeanJournalofPharmaceuticsandBiopharmaceutics,2008,70:165-170[]SongBT,WuCT,ChangJ.Dualdrugreleasefromelectrospunpoly(lactic-co-glycolicacid)mesoporoussilicananoparticlescompositematswithdistinctreleaseproles.ActaBiomaterialia,2012,8:1901-1907传感器纳米技术的发展,为传感器提供了优良的纳米敏感材料。与传统的传感器相比,纳米传感器尺寸小、敏感性高、应用领域广,基于纳米技术制作的传感器也极大地丰富了传感器的基础理论。其中纳米纤维由于其吸附力强、生物兼容性好、催化效率高、便于从反应体系中分离等性能,在传感器技术中得到广泛重视。纳米纤维的引入大幅提高了检测灵敏度,缩短响应时间,使仪器向微型化发展成为可能[[]DengXC,WangF,ChenZL.Anovelelectrochemicalsensorbasedonnanosrtucturedfilmelectrodeformonitoringnitricoxideinlivingtissues.Talanta,2010,82:1218-1224-[]UmJS,JangHJ,KimSM.Theelectrolyteofelectrochemicaloxygengassensor[]DengXC,WangF,ChenZL.Anovelelectrochemicalsensorbasedonnanosrtucturedfilmelectrodeformonitoringnitricoxideinlivingtissues.Talanta,2010,82:1218-1224[]UmJS,JangHJ,KimSM.Theelectrolyteofelectrochemicaloxygengassensor.ElectronMaterLett,2007,3:211-216[]DaiH,XuHF,LinYY.AhighlyperformingelectrochemicalsensorforNADHbasedongraphite-poly(methylmethacrylate)compositeeletrode.ElectrochemicalCommmunucaiton,2009,11:343-346目前,基于纳米纤维制备的传感器,已经应用于无机及有机物的检测。Liu等[[]Liu,.;Kameoka,J.;Czaplewski,.;Craighead,,Polymericnanowirechemicalsensor.Nanoletters2004,4(4),671-675.]将有序聚苯胺纳米纤维搭接在两块电极之间作为化学传感器,用于低浓度氨气的检测。LuohR等[[]LuohR,ThomasHH.Electrospunnanocompositefibermatsasgassensors.CompositeScienceandTechnology,2006,66:2436-2441]研究了一种基于PAN静电纺纳米纤维的CO2气体传感器,他们将包含纳米颗粒的聚合物溶液静电纺成纳米纤维,纳米颗粒选择粒径在10-70nm的氧化锌、氧化铁。用这种包含纳米颗

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论