版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
匀速圆周运动的临界问题【教学目标】知道非匀速圆周运动的特点;掌握竖直平面内的圆周运动的两种典型情况,会分析临界条件。会运用圆周运动的有关知识分析解决实际问题。
一、水平面内的匀速圆周运动的临界问题
【例1】如图所示,两绳系一质量为m=0.1kg的小球,两绳的另一端分别固定于轴的A、B两处,上面绳长l=2m,两绳拉直时与轴的夹角分别为30°和45°,问球的角速度在什么范围内两绳始终有张力(取g=10m/s2)?
【思维提升】此类问题中,往往是两根绳子恰无拉力时为角速度出现极大值和极小值的临界条件,抓住临界条件、分析小球在临界位置的受力情况是解决此类问题的关键.
【变式练习1】如图所示,一个光滑的圆锥体固定在水平桌面上,其轴线沿竖直方向,母线与轴线的夹角θ=30°,一条长为l的绳,一端固定在圆锥体的顶点O,另一端系一个质量为m的小球(可视为质点),小球以速率v绕圆锥体的轴线在水平面内做匀速圆周运动.试分析讨论v从零开始逐渐增大的过程中,球受圆锥面的支持力及摆角的变化情况.
二、竖直平面内的圆周运动中的临界问题
圆周运动中临界问题的分析,首先应考虑达到临界条件时物体所处的状态,然后分析该状态下物体的受力特点,结合圆周运动的知识,综合解决问题.
【例3】如图所示,在电机距轴O为r处固定一质量为m的铁块.电机启动后,铁块以角速度ω绕轴O匀速转动.求电机对地面的最大压力和最小压力之差.
【拓展】⑴若m在最高点时突然与电机脱离,它将如何运动?
⑵当角速度ω为何值时,铁块在最高点与电机恰无做用力?
⑶本题也可认为是一电动打夯机的原理示意图.若电机的质量为M,则ω多大时,电机可以“跳”起来?此情况下,对地面的最大压力是多少?
【设计意图】通过本例说明在竖直平面内物体做圆周运动通过最高点和最低点时向心力的来源,以及在最高点的临界条件的判断和临界问题分析方法.【变式练习2】如图所示,用一连接体一端与一小球相连,绕过O点的水平轴在竖直平面内做圆周运动,设轨道半径为r,图中P、Q两点分别表示小球轨道的最高点和最低点,则以下说法正确的是(BC)
A.若连接体是轻质细绳时,小球到达P点的速度可以为零
B.若连接体是轻质细杆时,小球到达P点的速度可以为零
C.若连接体是轻质细绳时,小球在P点受到细绳的拉力可能为零
D.若连接体是轻质细杆时,小球在P点受到细杆的作用力为拉力,在Q点受到细杆的作用力为推力
【解析】本题考查竖直面内的圆周运动,束缚物是细绳,物体在最高点的最小速度为,此时细绳拉力为零,A错,C对;束缚物是细杆时,如果最高点的速度为,细杆拉力为零,如果v>,细杆为拉力,如果v<,细杆为推力,B对,D错.
三、竖直平面内的圆周运动与能量的综合
【例4】(2009•安徽)过山车是游乐场中常见的设施.下图是一种过山车的简易模型,它由水平轨道和在竖直平面内的三个圆形轨道组成,B、C、D分别是三个圆形轨道的最低点,B、C间距与C、D间距相等,半径R1=2.0m、R2=1.4m.一个质量为m=1.0kg的小球(可视为质点),从轨道的左侧A点以v0=12.0m/s的初速度沿轨道向右运动,A、B间距L1=6.0m.小球与水平轨道间的动摩擦因数μ=0.2,圆形轨道是光滑的.假设水平轨道足够长,圆形轨道间不相互重叠.重力加速度取g=10m/s2,计算结果保留小数点后一位数字.试求:
(1)小球在经过第一个圆形轨道的最高点时,轨道对小球作用力的大小;
(2)如果小球恰能通过第二个圆形轨道,B、C间距L应是多少;
(3)在满足(2)的条件下,如果要使小球不能脱离轨道,在第三个圆形轨道的设计中,半径R3应满足的条件;小球最终停留点与起点A的距离.
【思维提升】本题侧重考查圆周运动临界条件的应用.物体运动从一种物理过程转变到另一物理过程,常出现一种特殊的转变状态,即临界状态.通过对物理过程的分析,找出临界状态,确定临界条件,往往是解决问题的关键.
【变式练习3】一内壁光滑的环形细圆管,位于竖直平面内,环的半径为R(比细管的半径大得多),圆管中有两个直径与细管内径相同的小球(可视为质点).A球的质量为m1,B球的质量为m2.它们沿环形圆管顺时针运动,经过最低点时的速度都为v0.设A球运动到最低点时,B球恰好运动到最高点,若要此时两球作用于圆管的合力为零,试写出m1、m2、R与v0应满足的关系式.
【思维提升】比较复杂的物理过程,如能依照题意画出草图,确定好研究对象,逐一分析就会变为简单问题.找出其中的联系就能很好地解决问题.学情分析牛顿第一定律告诉我们,物体在平衡力的作用下会保持原来的运动状态不变.然而通常情况下,物体的受力并不平衡,运动状态也在变化,那么当物体的运动状态发生改变时,这个改变点就是临界点.临界问题通常伴有“恰好”“最大”“至少”等词语出现.圆周运动由于其极强的瞬时性(如向心加速度的瞬时性以及向心力来源的突变性)往往伴随临界问题出现.同时,变速圆周运动在中学物理中一般也只是通过对特殊点进行研究,而在这样的特殊点处就常常出现临界问题.另外,圆周运动的临界问题具有其独特的解决方法,学生在解决时又经常不得其法.效果分析教师在教学中建立了和谐的师生关系,营造一个良好的质疑氛围,激发了学生提出问题的兴趣和勇气。要鼓励学生大胆地猜想,大胆地怀疑,教师适时的给予学生恰当的评价,是激发学生“乐学”的有效手段之一。一方面,抓住了学生在课堂中灵感的闪现与学生意见表达进行适时评价,对那些正处于情感情绪敏感时期的高中学生而言,教师发自肺腑的真诚鼓励、肯定和表扬,直接影响他们的学习效果、发展观等,另一方面,教师引导学生对问题进行深入的讨论,使学生的认识得以深化,问题得以解决。教师的一个适时评价,营造出了融洽的课堂氛围,沟通了师生感情,又进一步激发了学生的学习兴趣和热情。教材分析一、水平面内的匀速圆周运动的临界问题
1、此类问题的解题思路:
⑴明确研究对象的受力情况,
⑵抓住合力提供向心力这一关键点。
2、注意临界问题,往往都是被动力的临界问题
如:绳子达到最大拉力,恰好达到最大摩擦力等。
解题的关键是:确定临界状态并找出满足临界状态的条件。二、竖直平面内的圆周运动中的临界问题
1、轻绳模型:
如图所示,没有物体支撑的小球,在竖直平面做圆周运动过最高点的情况:
小球能到达最高点(刚好做圆周运动)的条件是小球的重力恰好提供向心力,即,这时的速度是做圆周运动的最小速度.
①临界条件:绳子或轨道对小球没有力的做用:
②能过最高点的条件:时,绳对球产生拉力,轨道对球产生压力.
③不能过最高点的条件:v<v临界(实际上球还没到最高点时就脱离了轨道)
2、轻杆模型:
如图的球过最高点时,轻质杆对球产生的弹力情况:
①当v=0时,FN=mg(FN为支持力).
②当0<v<时,FN随v增大而减小,且mg>FN>0,FN为支持力.
③当v=时,FN=0.
④当v>时,FN为拉力,FN随v的增大而增大.
3、拱桥模型
若是图的小球在轨道的最高点时,如果v≥此时将脱离轨道做平抛运动,因为轨道对小球不能产生拉力.评测练习1.如图所示,放置在水平地面上的支架质量为M,支架顶端用细线拴着的摆球质量为m,现将摆球拉至水平位置,而后释放,摆球运动过程中,支架始终不动,以下说法正确的是()
A.在释放前的瞬间,支架对地面的压力为(m+M)g
B.在释放前的瞬间,支架对地面的压力为Mg
C.摆球到达最低点时,支架对地面的压力为(m+M)g
D.摆球到达最低点时,支架对地面的压力为(3m+M)g
2.用一根细线一端系一小球(可视为质点),另一端固定在一光滑圆锥顶上,如图所示.设小球在水平面内做匀速圆周运动的角速度为ω,线的张力为FT,则FT随ω2变化的图象是图中的()
解析:小球角速度ω较小,未离开锥面时,设线的张力为FT,线的长度为L,锥面对小球的支持力为FN,则有FTcosθ+FNsinθ=mg,FTsinθ-FNcosθ=mω2Lsinθ,可得出:FT=mgcosθ+mω2Lsin2θ,可见随ω由0开始增加,FT由mgcosθ开始随ω2的增大,线性增大,当角速度增大到小球飘离锥面时,FT•sinα=mω2Lsinα,得FT=mω2L,可见FT随ω2的增大仍线性增大,但图线斜率增大了,综上所述,只有C正确.答案:C
3.质量为60kg的体操运动员做“单臂大回环”,用一只手抓住单杠,伸展身体,以单杠为轴做圆周运动.如图所示,此过程中,运动员到达最低点时手臂受的拉力至少约为(忽略空气阻力,g=10m/s2)()
A.600NB.2400N
C.3000ND.3600N
4.用一根细绳,一端系住一个质量为m的小球,另一端悬在光滑水平桌面上方h处,绳长l大于h,使小球在桌面上做如图所示的匀速圆周运动.若使小球不离开桌面,其转速最大值是()
5.如图所示,一可视为质点的物体质量为m=1kg,在左侧平台上水平抛出,恰能无碰撞地沿圆弧切线从A点进入光滑竖直圆弧轨道,并沿轨道下滑,A、B为圆弧两端点,其连线水平,O为轨道的最低点.已知圆弧半径为R=1.0m,对应圆心角为θ=106°,平台与AB连线的高度差为h=0.8m.(重力加速度g=10m/s2,sin53°=0.8,cos53°=0.6)求:
(1)物体平抛的初速度;
(2)物体运动到圆弧轨道最低点O时对轨道的压力.
教学反思(一)成功之处
本教学设计体现了新课程的教学理念,整个设计惯
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 音乐教师研修总结报告
- 2022年关于个人年度总结
- 一篇读书心得400字10篇
- 网站设计方案4篇
- 大班辨认安全标识
- 寒假医院实习心得
- 公司财务年终述职报告
- 班级管理策略
- 工厂应急安全培训
- 心理健康教育心得体会集合15篇
- 2025年中考道德与法治一轮教材复习-九年级下册-第一单元 我们共同的世界
- 【MOOC】中国电影经典影片鉴赏-北京师范大学 中国大学慕课MOOC答案
- 【MOOC】中药药理学-学做自己的调理师-暨南大学 中国大学慕课MOOC答案
- 陕西省西安市长安区2024-2025学年八年级上学期期中地理试卷
- 企业破产律师服务协议
- 预防火灾消防安全培训
- 2024年中国建设银行个人人民币贷款合同版B版
- 《古希腊罗马建筑》课件
- 第十五讲-新时代与中华民族共同体建设-中华民族共同体概论教案
- 肿瘤科介入治疗及护理
- 2023年国家公务员录用考试《行测》真题(行政执法)及答案解析
评论
0/150
提交评论