精选八年级数学教案集合6篇_第1页
精选八年级数学教案集合6篇_第2页
精选八年级数学教案集合6篇_第3页
精选八年级数学教案集合6篇_第4页
精选八年级数学教案集合6篇_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第页共页精选八年级数学教案集合6篇精选八年级数学教案集合6篇八年级数学教案篇1课题:三角形全等的断定(三)教学目的:1、知识目的:(1)掌握三边画三角形的方法;(2)掌握边边边公理,能用边边边公理证明两个三角形全等;(3)会添加较明显的辅助线.2、才能目的:(1)通过尺规作图使学生得到技能的训练;(2)通过公理的初步应用,初步培养学生的逻辑推理才能.3、情感目的:(1)在公理的形成过程中浸透:实验、观察、归纳;(2)通过变式训练,培养学生“举一反三”的学习习惯.教学重点:SSS公理、灵敏地应用学过的各种断定方法断定三角形全等。教学难点:如何根据题目条件和求证的结论,灵敏地选择四种断定方法中最适当的方法断定两个三角形全等。教学用具:直尺,微机教学方法:自学辅导教学过程:1、新课引入投影显示问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你最少要对窗框测量哪几个数据?假如你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?这个问题让学生议论后答复,他们的答案或许只是一种感觉。于是老师要引导学生,抓住问题的本质:三角形的三个元素――三条边。2、公理的获得问:通过上面问题的分析^p,满足什么条件的两个三角形全等?让学生粗略地概括出边边边的公理。然后和学生一起画图做实验,根据三角形全等定义对公理进展验证。(这里用尺规画图法)公理:有三边对应相等的两个三角形全等。应用格式:(略)强调说明:(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。(2)、在应用时,怎样寻找条件:条件包含两局部,一是中给出的,二时图形中隐含的(如公共边)(3)、此公理与前面学过的公理区别与联络(4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进展了沟通。(5)说明AAA与SSA不能断定三角形全等。3、公理的应用(1)讲解例1。学生分析^p完成,老师注重完成后的点评。例1如图△ABC是一个钢架,AB=ACAD是连接点A与BC中点D的支架求证:AD⊥BC分析^p:(设问程序)(1)要证AD⊥BC只要证什么?(2)要证∠1=只要证什么?(3)要证∠1=∠2只要证什么?(4)△ABD和△ACD全等的条件具备吗?根据是什么?证明:(略)八年级数学教案篇21.展示生活中一些平行四边形的实际应用图片〔推拉门,活动衣架,篱笆、井架等〕,想一想:这里面应用了平行四边形的什么性质?2.考虑:拿一个活动的平行四边形教具,轻轻拉动一个点,观察不管怎么拉,它还是一个平行四边形吗?为什么?〔动画演示拉动过程如图〕3.再次演示平行四边形的挪动过程,当挪动到一个角是直角时停顿,让学生观察这是什么图形?〔小学学过的长方形〕引出本课题及矩形定义.矩形定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形).矩形是我们最常见的图形之一,例如书桌面、教科书的封面等都有矩形形象.【探究】在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的'两个顶点上〔作出对角线〕,拉动一对不相邻的顶点,改变平行四边形的形状.①随着∠α的变化,两条对角线的长度分别是怎样变化的?②当∠α是直角时,平行四边形变成矩形,此时它的其他内角是什么样的角?它的两条对角线的长度有什么关系?操作,考虑、交流、归纳后得到矩形的性质.矩形性质1矩形的四个角都是直角.矩形性质2矩形的对角线相等.如图,在矩形ABCD中,AC、BD相交于点O,由性质2有AO=BO=CO=DO=AC=BD.因此可以得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半.例习题分析^p例1〔教材P104例1〕:如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=4cm,求矩形对角线的长.分析^p:因为矩形是特殊的平行四边形,所以它具有对角线相等且互相平分的特殊性质,根据矩形的这个特性和,可得△OAB是等边三角形,因此对角线的长度可求.解:∵四边形ABCD是矩形,∴AC与BD相等且互相平分.∴OA=OB.又∠AOB=60°,∴△OAB是等边三角形.∴矩形的对角线长AC=BD=2OA=2×4=8〔cm〕.例2〔补充〕:如图,矩形ABCD,AB长8cm,对角线比AD边长4cm.求AD的长及点A到BD的间隔AE的长.分析^p:〔1〕因为矩形四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,而此题利用方程的思想,解决直角三角形中的计算,这是几何计算题中常用的方法八年级数学教案篇3一、教学目的1.理解分式、有理式的概念.2.理解分式有意义的条件,能纯熟地求出分式有意义的条件.二、重点、难点1.重点:理解分式有意义的条件.2.难点:能纯熟地求出分式有意义的条件.三、课堂引入1.让学生填写P127[考虑],学生自己依次填出:,,.2.学生看问题:一艘轮船在静水中的最大航速为30/h,它沿江以最大航速顺流航行90所用时间,与以最大航速逆流航行60所用时间相等,江水的流速为多少?请同学们跟着老师一起设未知数,列方程.设江水的流速为v/h.轮船顺流航行90所用的时间为小时,逆流航行60所用时间小时,所以=.3.以上的式子,,有什么共同点?它们与分数有什么一样点和不同点?四、例题讲解P128例1.当以下分式中的字母为何值时,分式有意义.[分析^p]分式有意义,就可以知道分式的分母不为零,进一步解出字母的取值范围.[补充提问]假如题目为:当字母为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2.当为何值时,分式的值为0?〔1〕〔2〕〔3〕[分析^p]分式的值为0时,必须同时满足两个条件:分母不能为零;分子为零,这样求出的的解集中的公共局部,就是这类题目的解.[答案]〔1〕=0〔2〕=2〔3〕=1五、随堂练习1.判断以下各式哪些是整式,哪些是分式?9x+4,,,,,2.当x取何值时,以下分式有意义?〔1〕〔2〕〔3〕3.当x为何值时,分式的值为0?〔1〕〔2〕〔3〕六、课后练习1.以下代数式表示以下数量关系,并指出哪些是正是?哪些是分式?〔1〕甲每小时做x个零件,那么他8小时做零件个,做80个零件需小时.〔2〕轮船在静水中每小时走a千米,水流的速度是b千米/时,轮船的顺流速度是千米/时,轮船的逆流速度是千米/时.〔3〕x与的差于4的商是.2.当x取何值时,分式无意义?3.当x为何值时,分式的值为0?八年级数学教案篇4一、素质教育目的(一)知识教学点1.掌握平行四边形的断定定理1、2、3、4,并能与性质定理、定义综合应用.2.使学生理解断定定理与性质定理的区别与联络.3.会根据简单的条件画出平行四边形,并说明画图的根据是哪几个定理.(二)才能训练点1.通过“探究式试明法”开拓学生思路,开展学生思维才能.2.通过教学,使学生逐步学会分别从题设或结论出发寻求论证思路的分析^p方法,进一步进步学生分析^p问题,解决问题的才能.(三)德育浸透点通过一题多解激发学生的学习兴趣.(四)美育浸透点通过学习,体会几何证明的方法美.二、学法引导构造逆命题,分析^p探究证明,启发讲解.三、重点·难点·疑点及解决方法1.教学重点:平行四边形的断定定理1、2、3的应用.2.教学难点:综合应用断定定理和性质定理.3.疑点及解决方法:在综合应用断定定理及性质定理时,在什么条件下用断定定理,在什么条件下用性质定理(强调在求证平行四边形时用断定定理在平行四边形时用性质定理).八年级数学教案篇5一、教学目的〔一〕、知识与技能:〔1〕使学生理解因式分解的意义,理解因式分解的概念。〔2〕认识因式分解与整式乘法的互相关系——互逆关系,并能运用这种关系寻求因式分解的方法。〔二〕、过程与方法:〔1〕由学生自主探究解题途径,在此过程中,通过观察、类比等手段,寻求因式分解与因数分解之间的关系,培养学生的观察才能,进一步开展学生的类比思想。〔2〕由整式乘法的逆运算过渡到因式分解,开展学生的逆向思维才能。〔3〕通过对分解因式与整式的乘法的观察与比拟,培养学生的分析^p问题才能与综合应用才能。〔三〕、情感态度与价值观:让学生初步感受对立统一的辨证观点以及实事求是的科学态度。二、教学重点和难点重点:因式分解的概念及提公因式法。难点:正确找出多项式各项的公因式及分解因式与整式乘法的区别和联络。三、教学过程教学环节:活动1:复习引入看谁算得快:用简便方法计算:〔1〕7/9×13-7/9×6+7/9×2=;〔2〕-2.67×132+25×2.67+7×2.67=;〔3〕992–1=。设计意图:假如说学生对因式分解还相当生疏的话,相信学生对用简便方法进展计算应该相当熟悉.引入这一步的目的旨在让学生通过回忆用简便方法计算——因数分解这一特殊算法,使学生通过类比很自然地过渡到正确理解因式分解的概念上,从而为因式分解的掌握扫清障碍,本环节设计的计算992–1的值是为了降低下一环节的难度,为下一环节的理解搭一个台阶.考前须知:学生对于〔1〕〔2〕两小题逆向利用乘法的分配律进展运算的方法是很熟悉,对于第〔3〕小题的逆向利用平方差公式的运算那么有一定的困难,因此,有必要引导学生复习七年级所学过的整式的乘法运算中的平方差公式,帮助他们顺利地逆向运用平方差公式。活动2:导入课题P165的探究〔略〕;2.看谁想得快:993–99能被哪些数整除?你是怎么得出来的?设计意图:引导学生把这个式子分解成几个数的积的形式,继续强化学生对因数分解的理解,为学生类比因式分解提供必要的精神准备。活动3:探究新知看谁算得准:计算以下式子:〔1〕3x(x-1)=;〔2〕(a+b+c)=;〔3〕〔+4〕(-4)=;〔4〕〔-3〕2=;〔5〕a(a+1)(a-1)=;根据上面的算式填空:〔1〕a+b+c=;〔2〕3x2-3x=;〔3〕2-16=;〔4〕a3-a=;〔5〕2-6+9=。在第一组的整式乘法的计算上,学生通过对第一组式子的观察得出第二组式子的结果,然后通过对这两组式子的结果的比拟,使学生对因式分解有一个初步的意识,由整式乘法的逆运算逐步过渡到因式分解,开展学生的逆向思维才能。活动4:归纳、得出新知比拟以下两种运算的联络与区别:a(a+1)(a-1)=a3-aa3-a=a(a+1)(a-1)在第三环节的运算中还有其它类似的例子吗?除此之外,你还能找到类似的例子吗?八年级数学教案篇6数据的波动教学目的:1、经历数据离散程度的探究过程2、理解刻画数据离散程度的三个量度极差、标准差和方差,能借助计算器求出相应的数值。教学重点:会计算某些数据的极差、标准差和方差。教学难点:理解数据离散程度与三个差之间的关系。教学准备:计算器,投影片等教学过程:一、创设情境1、投影课本P138引例。(通过对问题串的解决,使学生直观地估计从甲、乙两厂抽取的20只鸡腿的平均质量,同时让学生初步体会平均程度相近时,两者的离散程度未必一样,从而顺理成章地引入刻画数据离散程度的一个量度极差)2、极差:是指一组数据中最大数据与最小数据的差,极差是用来刻画数据离散程度的一个统计量。二、活动与探究假如丙厂也参加了竞争,从该厂抽样调查了20只鸡腿,数据如图(投影课本159页图)问题:1、丙厂这20只鸡腿质量的平均数和极差是多少?2、如何刻画丙厂这20只鸡腿质量与其平均数的差距?分别求出甲、丙两厂的20只鸡腿质量与对应平均数的差距。3、在甲、丙两厂中,你认为哪个厂鸡腿质量更符合要求?为什么?(在上面的情境中,学生很容易比拟甲、乙两厂被抽取鸡腿质量的极差,即可得出结论。这里增加一个丙厂,其平均质量和极差与甲厂一样,此时导致学生思想认识上的矛盾,为引出另两个刻画数据离散程度的量度标准差和方差作铺垫。三、讲解概念:方差:各个数据与平均数之差的平方的平均数,记作s2设有一组数据:x1,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论