版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.在函数y=中,自变量x的取值范围是()A.x≥-3且x≠0 B.x<3C.x≥3 D.x≤32.下列图形既是中心对称图形又是轴对称图形的是()A. B. C. D.3.如图,证明矩形的对角线相等,已知:四边形是矩形.求证:.以下是排乱了的证明过程:①∴、.②∵③∵四边形是矩形④∴⑤∴.证明步骤正确的顺序是()A.③①②⑤④ B.②①③⑤④ C.③⑤②①④ D.②⑤①③④4.为了解某社区居民的用水情况,随机抽取20户居民进行调查,下表是所抽查居民2018年5月份用水量的调查结果:那么关于这次用水量的调查和数据分析,下列说法错误的是()居民(户数)128621月用水量(吨)458121520A.中位数是10(吨) B.众数是8(吨)C.平均数是10(吨) D.样本容量是205.平行四边形ABCD中,∠A比∠B大40°,则∠D的度数为()A.60° B.70° C.100° D.110°6.化简的结果是()A.9 B.3 C.3 D.27.若腰三角形的周长是,则能反映这个等腰三角形的腰长(单位:)与底边长(单位:)之间的函数关系式的图象是()A. B.C. D.8.同学在“爱心捐助”活动中,捐款数额为:8、10、10、4、6(单位:元),这组数据的中位数是()A.10 B.8 C.9 D.69.如图,在平行四边形ABCD中,BC=2AB,CE⊥AB于E,F为AD的中点,若∠AEF=54°,则∠B=()A.54° B.60° C.66° D.72°10.最简二次根式与是同类二次根式,则a为()A.a=6 B.a=2 C.a=3或a=2 D.a=111.等式成立的x的取值范围在数轴上可表示为(
)A. B. C. D.12.如图,在中,,,,D为AB上的动点,连接CD,以AD、CD为边作平行四边形ADCE,则DE长的最小值为()A.3 B.4 C. D.二、填空题(每题4分,共24分)13.将一次函数y=﹣x+1沿x轴方向向右平移3个单位长度得到的直线解析式为_____.14.若关于x的分式方程有非负数解,则a的取值范围是.15.小明利用公式计算5个数据的方差,则这5个数据的标准差的值是_____.16.a与5的和的3倍用代数式表示是________.17.一组数据:5,8,7,6,9,则这组数据的方差是_____.18.抛物线,当时,的取值范围是__________.三、解答题(共78分)19.(8分)某市为了美化环境,计划在一定的时间内完成绿化面积万亩的任务,后来市政府调整了原定计划,不但绿化面积要在原计划的基础上增加,而且要提前年完成任务,经测算要完成新的计划,平均每年的绿化面积必须比原计划多万亩,求原计划平均每年的绿化面积.20.(8分)如图,在矩形纸片ABCD中,已知边AB=3,BC=5,点E在边CD上,连接AE,将四边形ABCE沿直线AE折叠,得到多边形AB′C′E,且B′C′恰好经过点D.求线段CE的长度.21.(8分)问题的提出:如果点P是锐角内一动点,如何确定一个位置,使点P到的三顶点的距离之和的值为最小?问题的转化:把绕点A逆时针旋转得到,连接,这样就把确定的最小值的问题转化成确定的最小值的问题了,请你利用图1证明:;问题的解决:当点P到锐角的三顶点的距离之和的值为最小时,求和的度数;问题的延伸:如图2是有一个锐角为的直角三角形,如果斜边为2,点P是这个三角形内一动点,请你利用以上方法,求点P到这个三角形各顶点的距离之和的最小值.22.(10分)如图,正方形ABCD边长为3,G是CD边上的一个动点(点G与C、D不重合),以CG为一边向正方形ABCD外作正方形GCEF,连接DE,连接BG并延长交DE于H.(1)求证:BH⊥DE;(2)当BH平分DE时,求正方形GCEF的边长.23.(10分)解不等式组:,并在数轴上表示出它的解集。24.(10分)为了开展“足球进校园”活动,某校成立了足球社团,计划购买10个足球和若干件(不少于10件)对抗训练背心.甲、乙两家体育用品商店出售同样的足球和对抗训练背心,足球每个定价120元,对抗训练背心每件15元,现两家商店搞促销活动,甲店:每买一个足球赠送一件对抗训练背心;乙店:按定价的九折优惠.(1)设购买对抗训练背心x件,在甲商店付款为y甲元,在乙商店付款为y乙元,分别写出y甲,y乙与x的关系式;(2)就对抗训练背心的件数讨论去哪家商店买合算?25.(12分)小东根据学习一次函数的经验,对函数y=|2x﹣1|的图象和性质进行了探究.下面是小东的探究过程,请补充完成:(1)函数y=|2x﹣1|的自变量x的取值范围是;(2)已知:①当x=时,y=|2x﹣1|=0;②当x>时,y=|2x﹣1|=2x﹣1③当x<时,y=|2x﹣1|=1﹣2x;显然,②和③均为某个一次函数的一部分.(3)由(2)的分析,取5个点可画出此函数的图象,请你帮小东确定下表中第5个点的坐标(m,n),其中m=;n=;:x…﹣201m…y…5101n…(4)在平面直角坐标系xOy中,作出函数y=|2x﹣1|的图象;(5)根据函数的图象,写出函数y=|2x﹣1|的一条性质.26.在四边形ABCD中,AB//CD,∠B=∠D.(1)求证:四边形ABCD为平行四边形;(2)若点P为对角线AC上的一点,PE⊥AB于E,PF⊥AD于F,且PE=PF,求证:四边形ABCD是菱形.
参考答案一、选择题(每题4分,共48分)1、D【解析】
根据二次根式有意义的条件解答即可.【详解】由题意得3-x≥0,解得:x≤3,故选D.【点睛】本题考查二次根式有意义的条件,要使二次根式有意义必须满足被开方数大于等于0,熟练掌握二次根式有意义的条件是解题关键.2、A【解析】
根据轴对称图形与中心对称图形的概念依次对各项进行判断即可.【详解】A.是轴对称图形,也是中心对称图形,故此选项正确;B.不是轴对称图形,是中心对称图形,故此选项错误;C.不是轴对称图形,也不是中心对称图形,故此选项错误;D.是轴对称图形,不是中心对称图形,故此选项错误;故选:A.【点睛】本题考查中心对称图形与轴对称图形的识别.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3、A【解析】
根据SAS定理证明三角形全等,进而得出对应边相等.【详解】解:∵四边形是矩形∴、∵∴∴所以正确顺序为③①②⑤④故答案为A【点睛】本题考查了全等三角形的证明,理清证明过程是排序的关键.4、A【解析】
根据中位数、众数、平均数和样本容量的定义对各选项进行判断.【详解】解:这组数据的中位数为8(吨),众数为8(吨),平均数=(1×4+2×5+8×8+6×12+2×15+1×1)=10(吨),样本容量为1.故选:A.【点睛】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了平均数和中位数.5、B【解析】试题分析:根据平行四边形的对角相等,邻角之和为180°,即可求出该平行四边形各个内角的度数.解:画出图形如下所示:∵四边形ABCD是平行四边形,∴∠B=∠D,∠A+∠B=180°,又∵∠A﹣∠B=40°,∴∠A=110°,∠B=70°,∴∠D=∠B=70°.故选B.6、B【解析】
先进行二次根式的化简,再进行二次根式的除法运算求解即可.【详解】解:=1÷=1.故选:B.【点睛】本题考查了二次根式的乘除法,解答本题的关键在于熟练掌握该知识点的运算法则.7、D【解析】
根据三角形的周长列式并整理得到y与x的函数关系式,再根据三角形的任意两边之和大于第三边,任意两边之和大于第三边列式求出x的取值范围,即可得解.【详解】解:根据题意,x+2y=10,所以,,
根据三角形的三边关系,x>y-y=0,x<y+y=2y,所以,x+x<10,解得x<5,所以,y与x的函数关系式为(0<x<5),纵观各选项,只有D选项符合.故选D.【点睛】本题主要考查的是三角形的三边关系,等腰三角形的性质,求出y与x的函数关系式是解答本题的关键.8、B【解析】
找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【详解】题目中数据共有5个,
故中位数是按从小到大排列后第三数作为中位数,
故这组数据的中位数是8.
所以B选项是正确的.【点睛】本题属于基础题,考查了确定一组数据的中位数的能力.要明确定义.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.9、D【解析】
过F作AB、CD的平行线FG,由于F是AD的中点,那么G是BC的中点,即Rt△BCE斜边上的中点,由此可得BC=2EG=2FG,即△GEF、△BEG都是等腰三角形,因此求∠B的度数,只需求得∠BEG的度数即可;易知四边形ABGF是平行四边形,得∠EFG=∠AEF,由此可求得∠FEG的度数,即可得到∠AEG的度数,根据邻补角的定义可得∠BEG的值,由此得解.【详解】过F作FG∥AB∥CD,交BC于G;则四边形ABGF是平行四边形,所以AF=BG,即G是BC的中点;连接EG,在Rt△BEC中,EG是斜边上的中线,则BG=GE=FG=BC;∵AE∥FG,∴∠EFG=∠AEF=∠FEG=54°,∴∠AEG=∠AEF+∠FEG=108°,∴∠B=∠BEG=180°-108°=72°.故选D.【点睛】此题主要考查了平行四边形的性质、直角三角形的性质以及等腰三角形的判定和性质,正确地构造出与所求相关的等腰三角形是解决问题的关键.10、B【解析】试题分析:由题意可得:,解得a=2或a=3;当a=3时,,不是最简根式,因此a=3不合题意,舍去.因此a=2.故选B.考点:2.同类二次根式;2.最简二次根式;3.一元二次方程的解.11、B【解析】
根据二次根式有意义的条件即可求出的范围.【详解】由题意可知:,解得:,故选:.【点睛】考查二次根式的意义,解题的关键是熟练运用二次根式有意义的条件.12、D【解析】
当DE⊥CE时,DE最小,过点C作AB的垂线,交AB于点F.先证出是直角三角形,再用面积法求出CF的值,然后根据平行线间的距离处处相等得到DE的值。【详解】解:如图,当DE⊥CE时,DE最小,过点C作AB的垂线,交AB于点F.∵,,,∴是直角三角形,面积=×3×4=6,∴CF=∵平行四边形ADCE,∴CE∥AB,∴DE=CF=故选:D【点睛】本题考查了勾股定理的逆定理,垂线段最短的应用,熟练掌握定理和面积法求高是解题关键。二、填空题(每题4分,共24分)13、【解析】
平移后的直线的解析式的k不变,设出相应的直线解析式,从原直线解析式上找一个点,然后找到向右平移3个单位,代入设出的直线解析式,即可求得b,也就求得了所求的直线解析式.【详解】解:可设新直线解析式为y=-x+b,∵原直线y=﹣x+1经过点(0,1),∴向右平移3个单位,(3,1),代入新直线解析式得:b=,∴新直线解析式为:y=﹣x+.故答案为y=﹣x+.【点睛】此题主要考查了一次函数图象与几何变换,用到的知识点为:平移不改变直线解析式中的k,关键是得到平移后经过的一个具体点.14、且【解析】
分式方程去分母得:2x=3a﹣4(x﹣1),解得:,∵分式方程的解为非负数,∴,解得:又当x=1时,分式方程无意义,∴把x=1代入得∴要使分式方程有意义,必须∴a的取值范围是且15、【解析】
先根据平均数的定义求出,再代入公式求出方差,然后求出方差的算术平方根即标准差的值.【详解】解:根据题意知,,则,.故答案为.【点睛】本题考查了标准差:样本方差的算术平方根表示样本的标准差,它也描述了数据对平均数的离散程度.也考查了平均数与方差,解题的关键是熟练掌握基本知识,属于中考常考题型.16、3(a+5)【解析】根据题意,先求和,再求倍数.解:a与5的和为a+5,a与5的和的3倍用代数式表示是3(a+5).列代数式的关键是正确理解文字语言中的关键词,比如该题中的“倍”、“和”等,从而明确其中的运算关系,正确地列出代数式.17、2【解析】
先求出平均数,然后再根据方差的计算公式进行求解即可.【详解】=7,=2,故答案为:2.【点睛】本题考查了方差的计算,熟记方差的计算公式是解题的关键.18、【解析】
首先根据二次函数的的二次项系数大于零,可得抛物线开口向下,再计算抛物线的对称轴,判断范围内函数的增减性,进而计算y的范围.【详解】解:根据二次函数的解析式可得由a=2>0,可得抛物线的开口向上对称轴为:所以可得在范围内,二次函数在,y随x的增大而减小,在上y随x的增大而增大.所以当取得最小值,最小值为:当取得最大值,最大值为:所以故答案为【点睛】本题主要考查抛物线的性质,关键在于确定抛物线的开口方向,对称轴的位置,进而计算y的范围.三、解答题(共78分)19、原计划平均每年完成绿化面积万亩.【解析】
本题的相等关系是:原计划完成绿化时间−实际完成绿化实际=1.设原计划平均每年完成绿化面积x万亩,则原计划完成绿化完成时间年,实际完成绿化完成时间:年,列出分式方程求解【详解】解:设原计划平均每年完成绿化面积万亩.根据题意可列方程:去分母整理得:解得:,经检验:,都是原分式方程的根,因为绿化面积不能为负,所以取.答:原计划平均每年完成绿化面积万亩.【点睛】本题考查了分式方程的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.列分式方程解应用题的检验要分两步:第一步检验它是否是原方程的根,第二步检验它是否符合实际问题.20、【解析】
设CE=EC'=x,则DE=3−x,由△ADB''∽△DEC,可得ADDE=DB'EC′,列出方程即可解决问题;【详解】设CE=EC'=x,则DE=3−x,∵∠ADB'+∠EDC'=90°,∠B'AD+∠ADB'=90°,∴∠B'AD=∠EDC',∵∠B'=∠C'=90°,AB'=AB=3,AD=5,∴DB'==,∴△ADB'∽△DEC`,∴,∴,∴x=.∴CE=.【点睛】此题考查翻折变换(折叠问题),相似三角形的判定与性质,解题关键在于利用勾股定理进行计算21、(1)证明见解析;(2)满足:时,的值为最小;(3)点P到这个三角形各顶点的距离之和的最小值为.
【解析】
问题的转化:根据旋转的性质证明△APP´是等边三角形,则PP´=PA,可得结论;问题的解决:运用类比的思想,把绕点A逆时针旋转60度得到,连接,由“问题的转化”可知:当B、P、P´、C´在同一直线上时,的值为最小,确定当:时,满足三点共线;问题的延伸:如图3,作辅助线,构建直角△ABC´,利用勾股定理求AC´的长,即是点P到这个三角形各顶点的距离之和的最小值.【详解】问题的转化:如图1,由旋转得:∠PAP´=60°,PA=P´A,△APP´是等边三角形,∴PP´=PA,∵PC=P´C,.问题的解决:满足:时,的值为最小;理由是:如图2,把绕点A逆时针旋转60度得到,连接,由“问题的转化”可知:当B、P、P´、C´在同一直线上时,的值为最小,,∠APP´=60°,∴∠APB+∠APP´=180°,、P、P´在同一直线上,由旋转得:∠AP´C´=∠APC=120°,∵∠AP´P=60°,∴∠AP´C´+∠AP´P=180°,、P´、C´在同一直线上,、P、P´、C´在同一直线上,此时的值为最小,故答案为:;问题的延伸:如图3,中,,,,,把绕点B逆时针旋转60度得到,连接,当A、P、P´、C´在同一直线上时,的值为最小,由旋转得:BP=BP´,∠PBP´=60°,PC=P´C´,BC=B´C´,是等边三角形,∴PP´=PB,∵∠ABC=∠APB+∠CBP=∠APB+∠C´BP´=30°,∴∠ABC´=90°,由勾股定理得:AC´=,∴PA+PB+PC=PA+PP´+P´C´=AC´=,则点P到这个三角形各顶点的距离之和的最小值为.【点睛】本题主要考查三角形的旋转变换的性质、勾股定理、等边三角形的判定与性质等知识点,将待求线段的和通过旋转变换转化为同一直线上的线段来求是解题的关键,学会利用旋转的方法添加辅助线,构造特殊三角形解决问题,属于中考压轴题.22、(1)见解析;(2)3﹣3【解析】
(1)先由四边形和是正方形证明,得出,再得出;(2)连接BD,解题关键是利用垂直平分线的性质得出BD=BE,再由正方形的性质得出,即可得出结果.【详解】(1)证明:∵四边形是正方形∴,同理:,∴在和中,∴∴在中,∴∴∴(2)连接,如图所示:∵平分,由(1)知:∴∵正方形边长为∴∴∴正方形的边长为:【点睛】本题考查了正方形的性质、全等三角形的判定和性质以及线段垂直平分线的性质等几何知识,特殊图形的特殊性质要熟练掌握.23、-2<x≤3,数轴上表示见解析.【解析】
根据一元一次不等式的解法分别解出两个不等式,根据不等式的解集的确定方法得到不等式组的解集.【详解】解:,
解①得,x>-2,
解②得,x≤3,
则不等式组的解集为-2<x≤3,
在数轴上表示为:
.故答案为:-2<x≤3,数轴上表示见解析.【点睛】本题考查一元一次不等式组的解法,掌握确定解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到是解题的关键.24、(1)y甲=1050+15x(x≥10);y乙=13.5x+1080(x≥10);(2)见解析.【解析】
(1)在甲店购买的付款数=10个足球的总价+(x﹣10)件对抗训练背心的总价,把相关数值代入化简即可;在乙店购买的付款数=10个足球的总价的总价×0.9+x件对抗训练背心×0.9;(2)分别根据y甲=y乙时,y甲>y乙时,y甲<y乙时列出对应式子求解即可.【详解】(1)y甲=120×10+15(x﹣10)=1050+15x(x≥10);y乙=120×0.9×10+15×0.9x=13.5x+1080(x≥10);(2)y甲=y
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二手车交易协议个人
- 劳动合同解除协议书大全七篇
- 颈动脉斑块病因介绍
- 公司借款的协议书范本10篇
- 单位股东合作的协议书
- 药物中毒性周围神经病病因介绍
- 2023-2024学年天津市五区县重点校联考高三(上)期末语文试卷
- 2023年天津市部分区高考语文二模试卷
- 江苏省盐城市建湖县汉开书院学校2023-2024学年七年级上学期第二次月考道德与法治试题(解析版)-A4
- 食品工厂机械与设备模拟习题与参考答案
- GB/T 18277-2000公路收费制式
- 2023年住院医师规范化培训胸外科出科考试
- 11468工作岗位研究原理与应用第7章
- 2023实施《中华人民共和国野生动物保护法》全文学习PPT课件(带内容)
- 2022年初级育婴师考试题库附答案
- 系统家庭疗法课件
- 新版GSP《医疗器械经营质量管理规范》培训试题
- 初中道德与法治答题技巧课件
- 管理学专业:管理基础知识试题库(附含答案)
- 河北省保定市药品零售药店企业药房名单目录
- 广西基本医疗保险门诊特殊慢性病申报表
评论
0/150
提交评论