第十电子衍射演示文稿_第1页
第十电子衍射演示文稿_第2页
第十电子衍射演示文稿_第3页
第十电子衍射演示文稿_第4页
第十电子衍射演示文稿_第5页
已阅读5页,还剩38页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第十电子衍射演示文稿1目前一页\总数四十三页\编于十点2优选第十电子衍射目前二页\总数四十三页\编于十点常见的电子衍射花样晶态、准晶态和非晶态物质的衍射花样见图10-1图10-1常见的电子衍射花样a)单晶体b)多晶体c)准晶体d)非晶体a)b)c)d)第一节概述目前三页\总数四十三页\编于十点电子衍射的特点与X射线衍射相比,电子衍射具有如下特点:1)电子波波长很小,故衍射角2很小(约10-2rad)、反射球半径(1/)很大,在倒易原点O*附近的反射球面接近平面2)透射电镜样品厚度t很小,导致倒易阵点扩展量(1/t)很大,使略偏离布拉格条件的晶面也能产生衍射3)当晶带轴[uvw]与入射束平行时,在与反射球面相切的零层倒易面上,倒易原点O*附近的阵点均能与反射球面相截,从而产生衍射,所以单晶衍射花样是二维倒易平面的投影4)原子对电子的散射因子比对X射线的散射因子约大4个数量级,故电子衍射强度较高,适用于微区结构分析,且拍摄衍射花样所需的时间很短第一节概述目前四页\总数四十三页\编于十点第二节电子衍射原理一、布拉格定律由X射线衍射原理已经知道,布拉格定律是晶面产生衍射的必要条件,它仍适用于电子衍射,布拉格方程的一般形式为

2dsin=加速电压为100~200kV,电子束的波长为10-3nm数量级,而常见晶体的面间距为10-1nm数量级,则有

sin=/2d10-2

=10-2rad1表明电子衍射的衍射角很小,这是其衍射花样特征有别于X射线衍射的主要原因之一目前五页\总数四十三页\编于十点二、倒易点阵与爱瓦尔德图解(一)倒易点阵的概念1.倒易点阵基本矢量的定义设正点阵的基本矢量为a、b、c,定义相应的倒易点阵基本矢量为a*、b*、c*(图10-2),则有

(10-1)

式中,V是正点阵单胞的体积,有

(10-2)

倒易点阵基本矢量垂直于正点阵中与其异名的二基本矢量决定的平面第二节电子衍射原理图10-2倒、正空间基本矢量的关系目前六页\总数四十三页\编于十点二、倒易点阵与爱瓦尔德图解(一)倒易点阵的概念2.倒易点阵的性质1)基本矢量

(10-2)(10-3)正倒点阵异名基本矢量点乘积为0,由此可确定倒易点阵基矢的方向;同名基本矢量点乘积为1,由此可确定倒易点阵基矢的大小第二节电子衍射原理目前七页\总数四十三页\编于十点二、倒易点阵与爱瓦尔德图解(一)倒易点阵的概念2.倒易点阵的性质2)倒易矢量在倒易空间内,由倒易原点O*指向坐标为hkl

的阵点矢量称倒易矢量,记为ghkl

(10-4)倒易矢量ghkl与正点阵中的(hkl)晶面之间的几何关系为

(10-5)倒易矢量ghkl可用以表征正点阵中对应的(hkl)晶面的特性(方位和晶面间距),见图10-3第二节电子衍射原理目前八页\总数四十三页\编于十点第二节电子衍射原理二、倒易点阵与爱瓦尔德图解(一)倒易点阵的概念2.倒易点阵的性质4)对于正交晶系,有

(10-6)

对于立方晶系同指数晶向和晶面互相垂直,即晶向[hkl]

是晶面(hkl)的法线,

[hkl]//ghkl图10-3正、倒点阵的几何对应关系目前九页\总数四十三页\编于十点二、倒易点阵与爱瓦尔德图解(二)爱瓦尔德球图解在倒易空间,以O为球心,1/为半径作一个球,置倒易原点O*于球面上,从O向O*作入射波矢量k(k=1/),此球称爱瓦尔德球(或称反射球),见图10-4

若(hkl)晶面对应的倒易阵点G落在反射球面上,(hkl)

满足布拉格条件,有

kk=

ghkl

(10-7)

式中,ghkl为(hkl)的倒易矢量;k为衍射波矢量,代表(hkl)晶面衍射束方向

爱瓦尔德球图解是布拉格定律的几何表达形式,可直观地判断(hkl)

晶面是否满足布拉格条件图10-4爱瓦尔德球图解第二节电子衍射原理目前十页\总数四十三页\编于十点第二节电子衍射原理二、倒易点阵与爱瓦尔德图解(二)爱瓦尔德球图解由图10-4容易证明,式(10-7)和布拉格定律是完全等价的说明,只要(hkl)晶面的倒易阵点G

落在反射球面上,该晶面必满足布拉格方程,衍射束的方向为k(OG)爱瓦尔德球内三个矢量k、k和ghkl清晰地描述了入射束方向、衍射束方向和衍射晶面倒易矢量之间的相对几何关系。倒易矢量ghkl代表了正空间中(hkl)晶面的特性,因此又称ghkl为衍射晶面矢量如果能记录倒易空间中各ghkl矢量的排列方式,就能推算出正空间各衍射晶面的相对方位,这是电子衍射分析要解决的主要问题之一目前十一页\总数四十三页\编于十点第二节电子衍射原理三、晶带定理与零层倒易面1)

晶带定理正点阵中同时平行于某一晶向[uvw]的所有晶面构成一个晶带,这个晶向称为晶带轴,如图10-5所示

通过倒易原点O*(000)的倒易平面称零层倒易面,因为r

=[uvw]与零层倒易面(uvw)*0垂直,所以位于

(uvw)*0上的倒易矢量ghkl

也与r垂直,故有

ghkl

r

=0

hu+kv+lw=0(10-8)

式(10-8)即为晶带定理图10-5晶带与零层倒易面(uvw)*0[uvw](h1k1l1)(h1k1l1)(h2k2l2)(h2k2l2)(h3k3l3)(h3k3l3)000g3g2g1目前十二页\总数四十三页\编于十点第二节电子衍射原理三、晶带定理与零层倒易面1)

晶带定理晶带定理给出了晶面指数(hkl)和晶带轴指数[uvw]之间的关系。用晶带定理可求解已知两晶面的交线(即晶带轴)指数如已知两个晶面指数分别为(h1k1l1)和(h2k2l2),代入晶带定理

h1u+k1v+

l1w=0

h2u

+k2v+l2w=0解此方程组可求出晶带轴指数[uvw],即

u=k1l2

k2l1

v=l1h2

l2h1

(10-8)

w

=h1k2

h2k1目前十三页\总数四十三页\编于十点第二节电子衍射原理三、晶带定理与零层倒易面2)零层倒易面

单晶电子衍射花样是零层倒易平面的投影,倒易阵点的指数就是相应衍射斑点的指数对于立方晶体,若取晶带轴指数[001],则对应的零层倒易面为(001)*0,由晶带定理知,(100)、(110)等晶面属于

[001]晶带,再根据ghkl和(hkl)

间的关系,可画出(001)*0,见图10-6[001]000g110g210g010g100a)b)(001)*0图9-4立方晶体[001]晶带及倒易面(001)*0a)正空间b)倒空间目前十四页\总数四十三页\编于十点第二节电子衍射原理三、晶带定理与零层倒易面图10-7是体心立方晶体的2个零层倒易面。(001)*0倒易面上的阵点排列成正方形,而(011)*0上的阵点排列成矩形,说明利用衍射斑点排列的图形可确定晶体的取向图10-7体心立方晶体的零层倒易面

a)(001)*0,b)(011)*0目前十五页\总数四十三页\编于十点第二节电子衍射原理四、结构因子—倒易阵点的权重

满足布拉格方程只是产生衍射的必要条件,但能否产生衍射还取决于晶面的结构因子Fhkl,Fhkl是单胞中所有原子的散射波在(hkl)晶面衍射方向上的合成振幅,又称结构振幅

(10-9)式中,fj为晶胞中位于(xj,yj,zj)的第j个原子的原子散射因子,n为单胞的原子数因衍射强度Ihkl与Fhkl

2成正比,所以Fhkl反映了晶面的衍射能力,即Fhkl越大,衍射能力越强;当Fhkl=0时,即使满足布拉格条件也不产生衍射,称这种现象为消光将

Fhkl

0称为(hkl)晶面产生衍射的充分条件目前十六页\总数四十三页\编于十点第二节电子衍射原理四、结构因子—倒易阵点的权重常见的几种晶体结构的消光规律如下:简单立方:h、k、l为任意整数时,均有Fhkl

0,无消光现象

面心立方:h、k、l

为异性数时,Fhkl

=0,产生消光如{100}、{110}、{210}等晶面族体心立方:h

+

k

+l=

奇数时,Fhkl=0,产生消光如{100}、{111}、{210}等晶面族密排六方:h

+2k

=3n,且l

=

奇数时,Fhkl

=0,产生消光如{001}、{111}、{221}等晶面族目前十七页\总数四十三页\编于十点第二节电子衍射原理四、结构因子—倒易阵点的权重若将Fhkl

2作为倒易阵点的权重,则各倒易阵点彼此不再等同。既然Fhkl=0的晶面不能产生衍射,可将那些阵点从倒易点阵中除掉,仅留下Fhkl

0的阵点。如图10-8,将圆圈表示的阵点(Fhkl

=0)去掉,面心立方正点阵对应的倒易点阵为体心立方图10-8面心立方晶体(a)正点阵及(b)对应的倒易点阵a)b)目前十八页\总数四十三页\编于十点第二节电子衍射原理五、偏离矢量与倒易阵点扩展图10-9是衍射分析和衍衬分析常用的衍射条件,在这两种条件下,(uvw)*0

上只有1~2个倒易阵点能精确落在反射球面上,因满足布拉格条件而产生衍射。那么,为什么单晶电子衍射图是零层倒易平面阵点排列的投影?因透射电镜样品的尺寸很小,使倒易阵点产生扩展而占据一定空间,其扩展量是晶体该方向尺寸的倒数的2倍正是倒易阵点的扩展,使其与反射球面接触的机会增大,导致倒易原点O*附近的阵点均能与反射球面相截而发生衍射图10-9衍射和衍衬分析常用的衍射条件a)晶带轴和入射束平行b)双光束条件目前十九页\总数四十三页\编于十点第二节电子衍射原理五、偏离矢量与倒易阵点扩展对于透射电镜常见的样品(包括样品中相的形状),其对应的倒易阵点的形状如图10-10所示图10-10样品晶体形状和倒易阵点形状的对应关系样品晶体形状立方体倒易阵点形状颗粒状薄片状细杆状倒易星倒易球倒易杆倒易片目前二十页\总数四十三页\编于十点第二节电子衍射原理五、偏离矢量与倒易阵点扩展如图10-11所示,由于倒易阵点扩展成倒易杆而与反射球面相截,阵点中心指向反射球面的距离用s表示,称偏离矢量

倒易阵点中心落在反射球面时,s=0;阵点中心落在反射球面内,s>0;反之,阵点中心落在反射球面外,s<0

当s=0时,衍射强度最高;随s增大衍射强度降低;当s>1/t

时,倒易杆不再与反射球相截

偏离布拉格条件的衍射方程为

kk=

g+s(10-11)图10-11偏离参量对应的衍射强度目前二十一页\总数四十三页\编于十点第二节电子衍射原理五、偏离矢量与倒易阵点扩展图10-12给出了三种典型衍射条件下的反射球构图。晶体结构和晶体取向分析时,选择图10-12a的衍射条件;衍衬分析时,选用图10-12b或c所示的衍射条件图10-12三种典型衍射条件下的反射球构图a)s

0b)s0c)s0目前二十二页\总数四十三页\编于十点第二节电子衍射原理六、电子衍射基本公式如图10-13,样品安放在反射球心O处,在其下方距离L处是荧光屏或底片,O是透射斑点,G是衍射斑点因2很小,ghkl与k接近垂直,故可得,△OO*G∽△OOG,所以有,R/L

=g/k,即

Rd=L(10-12a)

或R

=Lg(10-12b)

式(10-12)是电子衍射基本公式式中,L称相机长度;

是电子束波长;d

是衍射晶面间距

K=L称为电子衍射相机常数图10-13衍射花样形成原理图目前二十三页\总数四十三页\编于十点第二节电子衍射原理六、电子衍射基本公式如图10-13所示,因ghkl与k接近垂直,认为R∥ghkl,可将式(10-12b)写成矢量式

R=

Lg

=

K

g(10-13)

式(10-13)表明,衍射斑点矢量R是相应晶面倒易矢量g的比例放大,因此K也称为电子衍射的放大率若倒易原点附近的倒易阵点均落在反射球面上,则相应的晶面能产生衍射,所获得的衍射花样就是零层倒易平面上阵点排列的投影简单地说,衍射斑点可直接看成是相应衍射晶面的倒易阵点;各个斑点的矢量R就是相应的倒易矢量g目前二十四页\总数四十三页\编于十点第二节电子衍射原理六、电子衍射基本公式在进行晶体结构测定或取向分析时,常需要进行系列倾转,在样品同一区域获得几个晶带的电子衍射花样。图10-14是面心立方晶体几个重要的低指数晶带电子衍射花样图10-14面心立方晶体几个常用低指数晶带的衍射花样a)[001]b)[011]c)[111]d)[112]a)b)c)d)目前二十五页\总数四十三页\编于十点第三节电子显微镜中的电子衍射一、有效相机常数如图10-15,透射电镜中的电子衍射,物镜焦距f0起到相机长度L的作用,而物镜背焦面上的衍射斑点间距r相当于底片上的衍射斑点间距R,因此有r=

f0g,

物镜背焦面上的衍射花样经中间镜和投影镜放大后,则有

L=

f0MiMp

,R=

rMiMp

称L为有效相机长度,可得

R=

Lg(10-14)K=f0MiMp称为有效相机常数,

K将随

f0、Mi、Mp变化而改变

一般情况下,不需区分L和L图9-12衍射花样形成示意图目前二十六页\总数四十三页\编于十点二、选区电子衍射如图10-16,入射电子束穿过样品后,在物镜背焦面上形成衍射花样,在物镜像平面上形成图像。若在物镜像平面处加入一光阑,只允许AB范围内的电子通过,而挡住AB范围以外的电子,最终到达荧光屏形成衍射花样的电子仅来自于样品的AB区域此光阑起到了限制和选择形成最终衍射花样的样品区域的作用

利用选区电子衍射可在多晶体样品中获得单晶体衍射花样,可实现组织形貌观察和晶体结构分析的微区对应图10-16选区电子衍射原理图物镜背焦面选区光栏中间镜中间镜像平面物镜像平面样品第三节电子显微镜中的电子衍射目前二十七页\总数四十三页\编于十点二、选区电子衍射选区电子衍射的选区范围可小至1m或更小,如图10-17所示,当选区范围内为ZrO2-CeO2陶瓷母相和新相共存时,可获得两相合成的衍射花样;若选区范围只有母相时,则只能获得母相的衍射花样图10-17ZrO2-CeO2陶瓷选区电子衍射a)母相和新相共存区b)母相区第三节电子显微镜中的电子衍射母相母相新相目前二十八页\总数四十三页\编于十点三、磁转角电子通过电磁透镜时,在磁场作用下作螺旋近轴运动,到达荧光屏时电子将转过一定角度成像操作时,若图像相对于样品的磁转角为i,而衍射操作时,衍射花样相对于样品的磁转角为d,则衍射花样相对于图像的磁转角为

=i

d

标定磁转角的方法是利用已知的面状结构特征,如TiB晶体柱面,标定方法见图10-18图10-18用已知面状结构特征标定磁转角200000(200)N200g200第三节电子显微镜中的电子衍射目前二十九页\总数四十三页\编于十点三、磁转角如图10-18所示,TiB晶体的空间形态为柱体,横截面为梭形,(200)晶面为其一柱面,图像中其法线方向为N200,衍射花样标定结果给出的法线方向为g200,N200与g200之间的夹角即为磁转角磁转角随放大倍数和相机长度的改变而变化,表10-1为CM12透射电镜在常用放大倍数和相机长度下的磁转角数据放大倍数10k17k22k35k45k60k100k200k相机长度(mm)53016.014.512.77.5-71.5-72.5-79.0-74.577011.510.08.24.0-76.0-77.0-74.5-79.0110021.019.517.713.5-66.5-67.5-69.5-69.5表10-1PHILIPSCM12透射电镜的磁转角()第三节电子显微镜中的电子衍射目前三十页\总数四十三页\编于十点第四节单晶体电子衍射花样标定标定电子衍射花样的目的,通过各衍射斑点指数和晶带轴指数的标定,以确定衍射物质的点阵类型、物相及其取向单晶体电子衍射花样的几何特征1)单晶电子衍射花样由规则排列的斑点构成,斑点位于二维网格的格点上,见图10-19

2)任意两个衍射斑点矢量间夹角等于相应两个衍射晶面之间的夹角

3)在花样中取两个衍射斑点矢量R1

和R2,其余各斑点矢量R

R=

mR1+

nR2

相应斑点指数之间的关系为

(hkl)=(mh1+nh2,mk1+nk2,

ml1+nl2)图10-19单晶电子衍射花样的几何特征目前三十一页\总数四十三页\编于十点第四节单晶体电子衍射花样标定一、已知晶体结构衍射花样的标定1.尝试校核法1)测量斑点间距R1,R2,R3

,测量R1与R2之间的夹角2)利用电子衍射基本公式,计算相应面间距d1,

d2,d33)对照物质卡片,由d值确定{h1k1l1},{h2k2l2},{h3k3l3}4)在{h1k1l1}晶面族中选定(h1k1l1)为R1对应衍射斑点指数5)在{h2k2l2}晶面族中选取(h2k2l2)为R2对应衍射斑点指数,用晶面间夹角公式计算(h1k1l1)和(h2k2l2)之间的夹角。若与测量值相符,说明(h2k2l2)选取正确;否则,重新选取再进行校核,直至相符为止6)根据已标定的两个斑点指数(h1k1l1)和(h2k2l2),用矢量运算标定其余各衍射斑点指数(hkl)7)利用晶带定理计算晶带轴指数[uvw]目前三十二页\总数四十三页\编于十点第四节单晶体电子衍射花样标定一、已知晶体结构衍射花样的标定1.尝试校核法标定图示的钢中马氏体衍射花样1)测得R1=R2=10.2mm,

R3=14.4mm,

=90º

2)计算d(L

=2.05mmnm)d1=d2

=L/R1

=0.201nmd3

=L/R3

=0.142nm3)根据d值确定对应晶面族指数{hkl}d1

=d2=0.201nm,对应晶面属于{110}晶面族

d3=0.142nm,对应晶面属于{200}晶面族000R1R2R3目前三十三页\总数四十三页\编于十点第四节单晶体电子衍射花样标定一、已知晶体结构衍射花样的标定1.尝试校核法4)R1斑点对应晶面属于{110}晶面族,

选定(110)为其指数5)在{110}晶面族中选择(-110)为R2

对应斑点的指数,经计算(110)和

(-110)间夹角与测量值90º相符6)标定其它斑点指数如R3=R1+R2,则(h3k3l3)=(h1+h2

k1+k2

l1+l2)=(020);其余衍射斑点指数均可按此标定7)利用晶带定律计算晶带轴指数[uvw]=[001]u

=k1l2

k2l1=0,

v

=l1h2

l2h1=0,

w

=h1k2

h2k1=1R1R2R3R1R2R3[001]000R1R2R3-110020000110目前三十四页\总数四十三页\编于十点第四节单晶体电子衍射花样标定一、已知晶体结构衍射花样的标定2.R2比值法

R2比值法较适用于立方晶系多晶体衍射花样标定1)测量衍射斑点间距R1,R2,R3,R4

,并将R值按递增顺序排列2)计算R2,根据R2比值规律确定点阵结构和晶面族指数{hkl}对于立方晶体有而斑点间距R与d成反比,故R2与N=h2+k2+l2成正比,即

(10-18)目前三十五页\总数四十三页\编于十点第四节单晶体电子衍射花样标定一、已知晶体结构衍射花样的标定2.R2比值法体心立方晶体

h

+

k

+

l=偶数的晶面才能产生衍射,N=

h2

+k2

+l2的取值为:2,4,6,8,10,即

N1:N2:N3:N4:N5:=2:4:6:8:10:面心立方晶体

h,k,l为全奇或全偶时才能产生衍射,N=h2+

k2

+

l2的取值为:3,4,8,11,12,即

N1:N2:N3:N4:N5:=3:4:8:11:12:目前三十六页\总数四十三页\编于十点第四节单晶体电子衍射花样标定一、已知晶体结构衍射花样的标定2.

R2比值法110200211220310000000222311220200111体心立方(a)和面心立方(b)多晶体电子衍射花样的标定示意图a)b)目前三十七页\总数四十三页\编于十点第四节单晶体电子衍射花样标定二、未知晶体结构衍射花样的标定1)测量衍射斑点间距R1,R2,R3,R4,2)利用式(10-12)计算面间距d1,d2,d3,d43)根据d值系列与可能物相卡片中的d系列对照,首先确定物相;物相确定后,可按已知晶体结构衍射花样标定的尝试校核法中第3步以后进行为了标定结果可靠,测量的斑点间距应尽可能多,一般至少要选择4个以上的斑点进行测量为了物相鉴定准确,应借助衍射物质的化学成分、形成条件等其它信息,以排除不可能的物相目前三十八页\总数四十三页\编于十点第四节单晶体电子衍射花样标定三、标准花样对照法对于立方晶体,晶面间距的比值及两晶面间夹角与点阵常数无关。因此对于不同点阵常数的物质,它们同一晶带衍射花样中斑点的排列图形是相似的。因此可以绘制一些常用的低指数晶带的标准衍射花样,将待标定的衍射花样与标准花样对比进行标定根据衍射花样的特征(如两边比R2/R1和两边间夹角)制成特征四边形表,也可用查表法进行标定此外,还可以利用计算机程序标定衍射花样,需要输入物相的点阵类型、点阵参数,电镜的相机常数,衍射花样的测量数据R1、R2、目前三十九页\总数四十三页\编于十点一、超点阵斑点以Cu3Au面心立方固溶体为例,无序时,Au和Cu原子随机占据单胞中的位置;有序时,Au占据顶角,Cu

占据面心位置,构成超点阵结构,见图10-20

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论