材料科学8chapter强度设计的一般方法_第1页
材料科学8chapter强度设计的一般方法_第2页
材料科学8chapter强度设计的一般方法_第3页
材料科学8chapter强度设计的一般方法_第4页
材料科学8chapter强度设计的一般方法_第5页
已阅读5页,还剩37页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

CHAPTER8:MECHANICALFAILURE断裂机理ISSUESTOHowdoflawsinamaterialinitiateHowisfracture fied;howdodifferentmaterialclassescompare?HowdoweestimatethestresstoHowdoloadingrate,loadinghistory,andtemperatureaffectthefailurestress?Computerchip-cyclicthermalloading.

Hipim nt-cyclicloadingfromwalking.1内内强?2研究含缺陷材料的强度--研究含缺陷材料的强度--3是总决定断面尺寸计算的名义断裂应力和断裂应变。4FractureSimplefracture:Separationofbodyintotwoormorepiecesinresponsetoanimposedstressthatisstatic(i.e.,constantorslowlychangingwithtime)andattemperaturesthatarelowrelativetothemeltingtemperature5DuctilevsBrittleFailure

AdaptedfromFig.%ARor Ductilefractureisthanbrittlefracture!

6Example:PipeFailuresDuctile--one--largeBrittle--many--smallFiguresfromV.J.ColangeloandF.A. ysisofMetallurgicalFailures(2nded.),Fig.4.1(a)and(b),p.66JohnWileyandSons,Inc.,1987.Usedwith7 YDUCTILEEvolutiontofailure:necking

voidnucleation

voidgrowthandlinkage

shearingatsurface

fracture50Resulting50(steel)particlesserveasvoidnucleation

FromV.J.ColangeloandF.A.ysisofMetallurgicalFailures(2nded.),Fig.11.28,p.294,JohnWileyandSons,Inc.,1987.(Orig.source:P.Thornton,J.Mater.Sci.,Vol.6,1971,pp.347-56.)

100100Fracturesurfaceoftirecordwireloadedintension.CourtesyofF.Roehrig,CC Dublin,OH.Used ModerayModerayDuctilevs.BrittleFailure AdaptedfromFig.8.3,Callister&Rethwisch9BrittleFailureArrowsArrowsindicatepointatwhichfailureAdaptedfromFig.8.5(a),Callister&RethwischBrittleFractureSurfaces(between 304S.Reprintedw/permission9thed,Fig.633,p.650.Copyright1985,ASMInternational,MaterialsPark,OH.(Micrographby4J.R.Keiserand4fromR.W.Hertzberg,"Defor-mationandFractureMechanicsofEngineeringMaterials",(4thed.)Fig.7.35(d),p.303,JohnWileyandSons,Inc.,1996.

(through316S.Reprintedw/permissionfrom"MetalsHandbook",9thed,Fig.650,p.357.Copyright1985,ASMInternational,MaterialsPark,OH.(MicrographD.R.Diercks,AlOxide3from"Failure ysisofBrittleMaterials",p.78.Copyright1990,TheAmericanCeramic(MicrographbyR.M.GruverandH.31(Orig.source:K.Friedrick,Fracture1977,13,ICF4,Waterloo,CA,1977,p.StressStress-strainbehavior(Room

perfectmat’l-noflawscarefullyproducedglassfiber

gineering<<TSperfect

typical typicalstrengthenedtypical Fracturestrengthofabrittlesolidisrelatedtothecohesive sbetweenatoms.thetheoreticalcohesivestrengthofabrittlematerialshouldbe~E/10. experimentalfracturestrengthisnormallyE/100-verysmall,microscopicflawsorcracksthatareinherenttothematerial.Theflawsactasstressconcentratorsorstressraisers,amplifyingthestressatagivenpoint.FlawsareStressThisdiscrepancyFlawsareStressThisdiscrepancyisinedbythepresence--thelongerthewire,thesmallertheloadforfailure.--flawscauseprematurefailure.--largersamplescontainlongerflaws!

Reprintedw/"DeformationandFractureMechanicsofEngineeringMaterials",(4thed.)Fig.7.4.JohnWileyandSons,Inc.,1996.FLAWSARESTRESSEllipticalholein •Stressdistrib.infrontofahole:te:

maxo

Stressconc.factor:

Ktmax/o LargeKtpromotesfailure:BAD

Kt=3

BAD! ENGINEERINGFRACTUREAvoidsharpcorners!StressConc.Factor,Kt=w

maxr,filletradius

h

increasingw/hAdaptedfromFig.8.2W(c),Callister6e.(Fig.8.2W(c)isfromG.H.Neugebauer,Prod.Eng.(NY),Vol.14,pp.82-871943.)

0

1.0sharperfilletradius

r/hCrackPropagationCrackshavingsharptipspropagateeasierthancrackshavingblunttips sticmaterialdeformsatacracktip,which“blunts”thecrack.EnergybalanceontheElasticstrain

energystoredinmaterialasitiselasticallythisenergyisreleasedwhenthecrackcreationofnewsurfacesrequiresCriterionforCrackPropagationElasticstrainenergyisreleasedbythepropagationofacrackinalarge,stressedcomponent.Thickness=ModulusThickness=Modulus=ElasticbycrackSurfaceenergyperunitarea= e2ESurfaceUs4at2newCriterionforCrackPropagationThetotalenergyofthesystemisafunctionofcrackCriticalCrackLength

ElasticStrain 2a2teEUs4atStrain

CrackLength,U=Us-

Atthecriticalcrack0sECriterionforCrackPropagationCrackpropagatesifcrack-tipstress(m)exceedsacriticalstress(c)

m>E=modulusof

c

as=specificsurfacea=onehalflengthofinternalForductilematerials=> ceswiths+wherep sticdeformationWHENDOESACRACKConditionforcrackpropagation:KKcStressIntensityFactor:--Dependsonload&geometry.

Fracture--Dependsonthematerial,temperature,environment,&rateofloading.ValuesofKforsomestandardloads&geometries:unitsofKmmor K K Yieldoccurs:y,yYieldoccurs:y,yFractureoccurs:KKcKcJustlikeKc:fracturetoughness断裂韧性Ameasureofamaterial’s tobrittlefracturewhenacrackispresentKcdependsonthethicknessofthesample.Asthicknessincreases,Kcdecreasestoaconstantvalue.The straintoughness,K1c,isthelowestvalue.Itisaconservativemeasureofthetoughness.KK1c:平面应变断裂韧性Afundamentalmaterialproperty! SicarbideAlSinitrideSicrystalGlass-Al/Al Aloxid/SiC(w)3SiAloxid/ZrO2(p)4C-C(||TiAlalloysMgalloysKIcKIc(MPa765432

fibers

FractureBasedondatainTableKmetalscKKmetalscKcerKpolyccincreasing1DESIGNAGAINSTCRACKCrackgrowthcondition: KKc Failure! Largest,moststressedcracksgrowfirst!--Result1:Maxflawsizedictatesdesignstress.

--Result2:Designstressdictatesmax.flawsize. 2YY

amax

Y fracturenofracture fracturenofracture

designfracturenofracture

DESIGNEX:AIRCRAFTMaterialhasKc=26MPa-Twodesignstoconsider...Design--largestflawis9mm--failurestress=112

Design--usesamematerial--largestflawis4mm--failurestress=Y YKeypoint:YandKcarethesameinbothdesigns.--Result:112

9 4 amaxAReducingflawsizepaysoff!

Answer: LOADINGIncreasedloadingrate...--increasesyand--decreasesWhy?Anincreasedrategiveslesstimefordisl.tomovepastobstacles.

larger

smallerImpactloading:--severetesting--morebrittle

case

sample--smallertoughnessImpacttoughnessfinalheight

initialheightCharpyImpactData:EnergyvsTemperatureDuctile-to-brittletransitiontemperature(DBTT)...ImpactImpactEnergy

BCCmetals(e.g.,ironatT<polymersMoreDuctileHighstrengthmaterialsDuctile-to-

Temperaturetransitiontemperatureoc6nDesignStrategy:StayAboveTheDBTT!Pre-WWII:The •WWII:LibertyReprintedw/permissionfromR.W.Hertzberg,"DeformationandFractureMechanicsofEngineeringMaterials",(4thed.)Fig.7.1(a),p.262,JohnWileyandSons,Inc.,1996.(Orig.source:Dr.RobertD.Ballard,TheDiscoveryoftheTitanic.)

Reprintedw/permissionfromR.W.Hertzberg,"DeformationandFractureMechanicsofEngineeringMaterials",(4thed.)Fig.7.1(b),p.262,JohnWileyandSons,Inc.,1996.(Orig.source:EarlR.Parker,"BehaviorofEngineeringStructures",Nat.Acad.Sci.,Nat.Res.Council,JohnWileyandSons,Inc.,NY,Problem:SteelswereusedhavingDBTT’sjustbelowroomtemperature.Fatigueisaformoffailurethatoccursinstructuressubjectedtodynamicstressesoveranextendedperiod.UndertheseconditionsitispossibletofailatstresslevelsconsiderablylowerthantensileoryieldstrengthforastaticSinglelargestcauseoffailureinmetals;alsoaffectspolymersandceramics.Commonfailureinbridges,aircraftand 才发生破坏,即破坏有一个过程。 FatigueFailure.AlohaAirlinesFlight243–April28th1988

19yearsAllrequiredsafetycheckshadbeenTheProblem“..at24,000ft,bothpilotsheardaload”clap”or“whooshing”sound,followedbyawindnoisebehindthem……Thecaptainobservedthat…therewas skywherethefirstclassceilinghadBasicFatigueTerminologyStressvarieswithtime.--keyparametersareSand

r=maxmeanmaxmin S=amplitudemaxmintimeR=min/N=numberoffatigueNf=numberofcyclestoAimtopredictfatiguelife umumcyclicloadsforinfiniteTypesofFatigueBehaviorFatiguelimit,--nofatigueifS<

S=stress S=stressN=Cyclesto

caseforsteel(typ.)AdaptedfromFig.Forsomematerials,thereisnofatigue

S=stress S=stressN=Cyclesto

caseforAlAdaptedfromFig.FATIGUECrackgrowsincrementallyrangeofstressintensityatroot

crack,calculatedfrommaxstressminusminimumstresscrackoriginincreaseincracklengthperloadingcrackoriginFailedrotatingshaft--crackgreweventhoughKmax<Kc--crackgrowsfasterifincreasescrackgetslongerloadingfreq.increases.C.;;ImprovingFatigueLifeImposecompressivesurfacestresses(tosuppresssurface

AdaptedS=stressFig.8.24,S=stressnearzeroorcompressivemoderatetensileLargertensileN=Cyclesto--Method1:shot

--Method2:C-richRemovestress

Fig.8.25,Callister&Rethwisch8e.Creep:Time-dependentandpermanentdeformationconstantstressesbelowOccursatelevatedtemperature,T>0.4Deformationchangeswithtime.

strain,

INCREASING TT<0.4elastic0

secondary

tertiary

timeCreepcurvePrimarycreepDecreasingcreepratestrainhardensMicrostructurechangeSteady-statecreepWithoutmicrostructurechangeconstantslopeLinearorpower-lawrelationshipwithstressFlowofatomormotiondislocationTertiarycreepAccelerationofratevoidformation/neckingRupture(failurebelowtheyieldstress)

SECONDARYMostofcomponentlifespenthere.StrainrateisconstantatagivenT,--strainhardeningisbalancedbyrecovery

ssexpoQssexpoQc

nent(materialparameter)activationenergyforcreepstrainratematerialconst.

RT (materialparameter)appliedstressStrainrateincreasesforlargerT,

4020

Stress

2 1 Steadystatecreeprates CreepFailureFailure:alonggraing.b.FromV.J.ColangeloandF.A.Heiser, ysisofMetallurgicalFailures(2nded.),Fig.4.32,p.87,JohnWileyandSo

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论