江苏省扬州市广陵区扬州中学2023年高二数学第二学期期末质量跟踪监视试题含解析_第1页
江苏省扬州市广陵区扬州中学2023年高二数学第二学期期末质量跟踪监视试题含解析_第2页
江苏省扬州市广陵区扬州中学2023年高二数学第二学期期末质量跟踪监视试题含解析_第3页
江苏省扬州市广陵区扬州中学2023年高二数学第二学期期末质量跟踪监视试题含解析_第4页
江苏省扬州市广陵区扬州中学2023年高二数学第二学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设是等差数列的前项和,已知,,则等于().A. B. C. D.2.若随机变量满足,且,,则()A. B. C. D.3.将一枚质地均匀的硬币抛掷四次,设为正面向上的次数,则等于()A. B. C. D.4.设等差数列的公差为d,若数列为递减数列,则()A. B. C. D.5.曲线在处的切线斜率是()A. B. C. D.6.、、、、、六名同学站成一排照相,其中、两人相邻的不同排法数是()A.720种 B.360种 C.240种 D.120种7.在的二项展开式中,的系数为()A. B. C. D.8.命题“”为真命题的一个充分不必要条件是()A. B. C. D.9.条件,条件,若是的必要不充分条件,则的取值范围是()A. B. C. D.10.已知点与抛物线的焦点的距离是,则的值是()A. B. C. D.11.在满分为15分的中招信息技术考试中,初三学生的分数,若某班共有54名学生,则这个班的学生该科考试中13分以上的人数大约为()(附:)A.6 B.7 C.9 D.1012.函数f(x)是定义在R上的偶函数,在(-∞,0]上是减函数且f(2)=0,则使f(x)<0的x的取值范围()A.(-∞,2) B.(2,+∞)C.(-∞,-2)∪(2,+∞) D.(-2,2)二、填空题:本题共4小题,每小题5分,共20分。13.如图,从气球上测得正前方的河流的两岸,的俯角分别为和,如果这时气球的高是30米,则河流的宽度为______米.14.设是等差数列的前项和,已知,,则_______.15.已知定义在上的函数满足(其中为的导函数)且,则不等式的解集是__________.16.设是定义在上的可导函数,且满足,则不等式解集为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数的定义域为,且对任意实数恒有(且)成立.(1)求函数的解析式;(2)讨论在上的单调性,并用定义加以证明.18.(12分)如果球、正方体与等边圆柱(底面直径与母线相等)的体积相等,求它们的表面积的大小关系.19.(12分)在直角坐标系中,直线的参数方程为(为参数).再以原点为极点,以正半轴为极轴建立极坐标系,并使得它与直角坐标系有相同的长度单位.在该极坐标系中圆的方程为.(1)求圆的直角坐标方程;(2)设圆与直线交于点、,若点的坐标为,求的值.20.(12分)设,,其中a,.Ⅰ求的极大值;Ⅱ设,,若对任意的,恒成立,求a的最大值;Ⅲ设,若对任意给定的,在区间上总存在s,,使成立,求b的取值范围.21.(12分)已知函数.(1)当时,解不等式;(2)当时,不等式对任意恒成立,求实数的取值范围.22.(10分)如图,在三棱柱中,,,点在平而内的射影为(1)证明:四边形为矩形;(2)分别为与的中点,点在线段上,已知平面,求的值.(3)求平面与平面所成锐二面角的余弦值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】试题分析:依题意有,解得,所以.考点:等差数列的基本概念.【易错点晴】本题主要考查等差数列的基本概念.在解有关等差数列的问题时可以考虑化归为和等基本量,通过建立方程(组)获得解.即等差数列的通项公式及前项和公式,共涉及五个量,知其中三个就能求另外两个,即知三求二,多利用方程组的思想,体现了用方程的思想解决问题,注意要弄准它们的值.运用方程的思想解等差数列是常见题型,解决此类问题需要抓住基本量、,掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算.2、A【解析】

根据二项分布的数学期望和方差求解.【详解】由题意得:解得:,故选A.【点睛】本题考查二项分布的数学期望和方差求解,属于基础题.3、C【解析】分析:先确定随机变量得取法,再根据独立重复试验求概率.详解:因为所以选C.点睛:次独立重复试验事件A恰好发生次得概率为.其中为1次试验种A发生得概率.4、C【解析】试题分析:因为是等差数列,则,又由于为递减数列,所以,故选C.考点:1.等差数列的概念;2.递减数列.5、C【解析】

根据已知对求导,将代入导函数即可.【详解】∵y′=(cosx)′=-sinx,∴当时,.故选C.【点睛】本题考查利用导数求切线斜率问题,已知切点求切线斜率问题,先求导再代入切点横坐标即可,属于基础题.6、C【解析】

先把、两人捆绑在一起,然后再与其余四人全排列即可求出、两人相邻的不同排法数.【详解】首先把把、两人捆绑在一起,有种不同的排法,最后与其余四人全排列有种不同的排法,根据分步计算原理,、两人相邻的不同排法数是,故本题选C.【点睛】本题考查了全排列和分步计算原理,运用捆绑法是解题的关键.7、C【解析】

因为,可得时,的系数为,C正确.8、A【解析】

根据,成立,求得,再根据集合法,选其子集即可.【详解】因为,成立,所以,成立,所以,命题“”为真命题的一个充分不必要条件是.故选:A【点睛】本题主要考查不等式恒成立及逻辑关系,还考查了运算求解的能力,属于基础题.9、B【解析】因为是的必要不充分条件,所以是的必要不充分条件,可以推导出,但是不能推导出,若,则等价于无法推导出;若,则等价于满足条件的为空集,无法推导出;若,则等价于,由题意可知,,,,的取值范围是,故选B.10、B【解析】

利用抛物线的焦点坐标和两点间的距离公式,求解即可得出的值.【详解】由题意可得抛物线的焦点为,因为点到抛物线的焦点的距离是5.所以解得.故选:B.【点睛】本题主要考查抛物线的标准方程和性质,还结合两点间距离公式求解.11、C【解析】

分析:现利用正态分布的意义和原则结合正态分布曲线的对称性,计算大于的概率,即可求解得到其人数.详解:因为其中数学考试成绩服从正态分布,因为,即根据正态分布图象的对称性,可得,所以这个班级中数学考试成绩在分以上的人数大约为人,故选C.点睛:本题主要考查了随机变量的概率分布中正态分布的意义和应用,其中熟记正态分布图象的对称性是解答的关键,着重考查了转化与化归思想方法的应用,属于基础题.12、D【解析】

根据偶函数的性质,求出函数在(-∞,0]上的解集,再根据对称性即可得出答案.【详解】由函数为偶函数,所以,又因为函数在(-∞,0]是减函数,所以函数在(-∞,0]上的解集为,由偶函数的性质图像关于轴对称,可得在(0,+∞)上的解集为(0,2),综上可得,的解集为(-2,2).故选:D.【点睛】本题考查了偶函数的性质的应用,借助于偶函数的性质解不等式,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

由题意画出图形,利用特殊角的三角函数,可得答案.【详解】解:由题意可知,,,,.故答案为.【点睛】本题给出实际应用问题,着重考查了三角函数的定义,属于简单题.14、49【解析】

.15、【解析】分析:根据题意,令g(x)=,对其求导可得g′(x),分析可得g′(x)<0,即函数g(x)为减函数;结合f(1)=e可得g(1)=,则不等式f(x)>ex⇔>1⇔g(x)>1⇔g(x)>g(1),借助函数的单调性分析可得答案.详解:根据题意,令g(x)=,则其导数g′(x)=,又由f′(x)<f(x),则有g′(x)<0,即函数g(x)为减函数;且g(1)=;则不等式f(x)>ex⇔>1⇔g(x)>1⇔g(x)>g(1),又由函数g(x)为减函数,则有x<1;则不等式f(x)>ex的解集为(-∞,1);故答案为:.点睛:(1)本题主要考查利用导数求函数的单调性和解不等式,意在考查学生对这些知识的掌握水平和分析推理转化能力.(2)解答本题的关键是构造函数g(x)=求其单调性,再利用单调性解不等式g(x)>g(1).16、【解析】

构造函数,结合题意求得,由此判断出在上递增,由此求解出不等式的解集.【详解】令,,故函数在上单调递增,不等式可化为,则,解得:.【点睛】本小题主要考查构造函数法解不等式,考查化归与转化的数学思想方法,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)当时,在上为单调减函数;当时,在上为单调增函数.【解析】试题分析:(1)①,用替换①式中的有:②,由①②消去即可得结果;(2)讨论两种情况,分别利用复合函数的单调性判断其单调性,再利用定义意且,判定的符合,即可证明结论.试题解析:(1)∵对任意实数恒有:①,用替换①式中的有:②,①×②—②得:,(2)当时,函数为单调减函数,函数也为单调减函数,∴在上为单调减函数.当时,函数为单调增函数,函数也为单调增函数,∴在上为单调增函数.证明:设任意且,则,∵,,①当时,则,∴∴在上是减函数.②当时,则,∴∴在上是增函数.综上:当时,在上为单调减函数;当时,在上为单调增函数.18、【解析】

分别用体积表示其面积,再比较大小。【详解】解:设球的半径为R、正方体的棱长为a,等边圆柱的底面半径为r,且它们的体积都为V,则:V=,.,.【点睛】分别用体积表示其面积,再比较大小。19、(1)(2)【解析】试题分析:(1)由可将圆的极坐标方程化为直角坐标方程;(2)先将直线的参数方程代入圆C方程,再根据参数几何意义得,最后根据韦达定理求的值.试题解析:(1);(2)直线的参数方程代入圆C方程得.点睛:直线的参数方程的标准形式的应用过点M0(x0,y0),倾斜角为α的直线l的参数方程是.(t是参数,t可正、可负、可为0)若M1,M2是l上的两点,其对应参数分别为t1,t2,则(1)M1,M2两点的坐标分别是(x0+t1cosα,y0+t1sinα),(x0+t2cosα,y0+t2sinα).(2)|M1M2|=|t1-t2|.(3)若线段M1M2的中点M所对应的参数为t,则t=,中点M到定点M0的距离|MM0|=|t|=.(4)若M0为线段M1M2的中点,则t1+t2=0.20、(Ⅰ)1;(Ⅱ);(Ⅲ).【解析】

Ⅰ求出的导数,令导数大于0,得增区间,令导数小于0,得减区间,进而求得的极大值;Ⅱ当,时,求出的导数,以及的导数,判断单调性,去掉绝对值可得,构造函数,求得的导数,通过分离参数,求出右边的最小值,即可得到a的范围;Ⅲ求出的导数,通过单调区间可得函数在上的值域为,由题意分析时,结合的导数得到在区间上不单调,所以,,再由导数求得的最小值,即可得到所求范围.【详解】Ⅰ,当时,,在递增;当时,,在递减.则有的极大值为;Ⅱ当,时,,,在恒成立,在递增;由,在恒成立,在递增.设,原不等式等价为,即,,在递减,又,在恒成立,故在递增,,令,,∴,在递增,即有,即;Ⅲ,当时,,函数单调递增;当时,,函数单调递减.又因为,,,所以,函数在上的值域为.由题意,当取的每一个值时,在区间上存在,与该值对应.时,,,当时,,单调递减,不合题意,当时,时,,由题意,在区间上不单调,所以,,当时,,当时,0'/>所以,当时,,由题意,只需满足以下三个条件:,,使.,所以成立由,所以满足,所以当b满足即时,符合题意,故b的取值范围为.【点睛】本题考查导数的运用:求单调区间和极值,主要考查不等式恒成立和存在性问题,注意运用参数分离和构造函数通过导数判断单调性,求出最值,属于难题.21、(1);(2)【解析】分析:(1)利用零点分类讨论法解不等式.(2)先利用分段函数求得,再解不等式得到实数的取值范围.详解:(1)当时,由得,故有或或∴或或,∴或,∴的解集为或.(2)当时∴由得∴∴的取值范围为.点睛:(1)本题主要考查绝对值不等式的解法,考查分段函数的最值的求法,考查不等式的恒成立问题,意在考查学生对这些知识的掌握水平和分类讨论的思想方法.(2)解题的关键是求的最小值,这里要利用分段函数的图像求解.22、(1)详见解析(2)(3)【解析】

(1)根据投影分析线段长度关系,由此得到长度关系,由此去证明四边形为矩形;(2)通过取中点,作出辅助线,利用线面平行确定点位置,从而完成的计算;(3)建立合适空间直角坐标系,利用向量法求解锐二

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论