




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设复数满足,则()A. B. C. D.2.已知离散型随机变量的概率分布列如下:01230.20.30.4则实数等于()A.0.5 B.0.24 C.0.1 D.0.763.直线(为参数)上与点的距离等于的点的坐标是A. B.C.或 D.或4.下列命题中真命题的个数是()①,;②若“”是假命题,则都是假命题;③若“,”的否定是“,”A.0 B.1 C.2 D.35.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件6.某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.7.已知x,y的取值如下表,从散点图知,x,y线性相关,且y=0.6x+a,则下列说法正确的是(x1234y1.41.82.43.2A.回归直线一定过点(2.2,2.2)B.x每增加1个单位,y就增加1个单位C.当x=5时,y的预报值为3.7D.x每增加1个单位,y就增加0.7个单位8.己知变量x,y的取值如下表:x3456y2.5344.5由散点图分析可知y与x线性相关,且求得回归方程为,据此预测:当时,y的值约为A.5.95 B.6.65 C.7.35 D.79.已知自然数,则等于()A. B. C. D.10.有10件产品,其中3件是次品,从中任取两件,若X表示取得次品的个数,则P(X2)等于A. B.C. D.111.命题若,则,是的逆命题,则()A.真,真 B.真,假 C.假,真 D.假,假12.已知,椭圆的方程,双曲线的方程为,和的离心率之积为,则的渐近线方程为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,顶点为P的圆锥的轴截面是等腰直角三角形,母线PA=4,O是底面圆心,B是底面圆内一点,且AB⊥OB,C为PA的中点,OD⊥PB,垂足为D,当三棱锥O-PCD的体积最大时,OB=______.14.随机变量的分布列如下表:01Pab且,则______.15.已知数列{an}中,a1=1,an=an-1+(n≥2),则数列{an}的前9项和等于________.16.已知某电子元件的使用寿命(单位:小时)服从正态分布,那么该电子元件的使用寿命超过1000小时的概率为____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设数列的前n项和为已知直角坐标平面上的点均在函数的图像上.(1)求数列的通项公式;(2)若已知点,,为直角坐标平面上的点,且有,求数列的通项公式;(3)在(2)的条件下,若使对于任意恒成立,求实数t的取值范围.18.(12分)已知函数,其中(Ⅰ)求的单调区间;(Ⅱ)若在上存在,使得成立,求的取值范围.19.(12分)已知数列的前项和为,且.(1)求数列的通项公式;(2)设数列的前项和为,证明:.20.(12分)在平面直角坐标系xoy中,直线l的参数方程为(为参数),曲线.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)若点在曲线上,求的取值范围;(2)设直线l与曲线交于M、N两点,点Q的直角坐标为,求的值.21.(12分)如图,圆柱的轴截面是,为下底面的圆心,是母线,.(1)证明:平面;(2)求三棱锥的体积.22.(10分)如图,在四棱锥中,底面,,,,,点为棱的中点(1)证明:;(2)若为棱上一点,满足,求锐二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】分析:先根据复数除法得,再根据复数的模求结果.详解:因为,所以,因此选D.点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如.其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为2、C【解析】
根据随机变量概率的性质可得,从而解出。【详解】解:据题意得,所以,故选C.【点睛】本题考查了概率性质的运用,解题的关键是正确运用概率的性质。3、D【解析】
直接利用两点间的距离公式求出t的值,再求出点的坐标.【详解】由,得,则,则所求点的坐标为或.故选D【点睛】本题主要考查直线的参数方程和两点间的距离公式,意在考查学生对这些知识的理解掌握水平,属于基础题.4、B【解析】若,,故命题①假;若“”是假命题,则至多有一个是真命题,故命题②是假命题;依据全称命题与特征命题的否定关系可得命题“”的否定是“”,即命题③是真命题,应选答案B.5、D【解析】取,则,但,故;取,则,但是,故,故“”是“”的既不充分也不必要条件,选D.6、A【解析】
该空间几何体是由具有相同底面和高的三棱柱和三棱锥组合而成,分别求出体积即可.【详解】该空间几何体是由具有相同底面和高的三棱柱和三棱锥组合而成,底面三角形的面积为,三棱柱和三棱锥的高为1,则三棱柱的体积,三棱锥的体积为,故该几何体的体积为.故选A.【点睛】本题考查了空间组合体的三视图,考查了学生的空间想象能力,属于基础题.7、C【解析】
由已知求得样本点的中心的坐标,代入线性回归方程即可求得a值,进一步求得线性回归方程,然后逐一分析四个选项即可得答案.【详解】解:由已知得,x=1+2+3+44=2.5,由回归直线方程y^=0.6x+a^恒过样本中心点(2.5,2.2),得2.2=0.6×2.5+∴回归直线方程为ŷx每增加1个单位,y就增加1个单位,故B错误;当x=5时,y的预测值为3.1,故C正确;x每增加1个单位,y就增加0.6个单位,故D错误.∴正确的是C.故选C.【点睛】本题考查线性回归直线方程,解题关键是性质:线性回归直线一定过点(x8、B【解析】
先计算数据的中心点,代入回归方程得到,再代入计算对应值.【详解】数据中心点为代入回归方程当时,y的值为故答案选B【点睛】本题考查了数据的回归方程,计算数据中心点代入方程是解题的关键,意在考查学生的计算能力.9、D【解析】分析:直接利用排列数计算公式即可得到答案.详解:.故选:D.点睛:合理利用排列数计算公式是解题的关键.10、C【解析】
根据超几何分布的概率公式计算各种可能的概率,得出结果【详解】由题意,知X取0,1,2,X服从超几何分布,它取每个值的概率都符合等可能事件的概率公式,即P(X=0)=,P(X=1)=,P(X=2)=,于是P(X<2)=P(X=0)+P(X=1)=故选C【点睛】本题主要考查了运用超几何分布求概率,分别求出满足题意的情况,然后相加,属于中档题.11、C【解析】由题意,,所以,得,所以命题为假命题,又因为是的逆命题,所以命题:若,则为真命题,故选C.12、A【解析】
根据椭圆与双曲线离心率的表示形式,结合和的离心率之积为,即可得的关系,进而得双曲线的离心率方程.【详解】椭圆的方程,双曲线的方程为,则椭圆离心率,双曲线的离心率,由和的离心率之积为,即,解得,所以渐近线方程为,化简可得,故选:A.【点睛】本题考查了椭圆与双曲线简单几何性质应用,椭圆与双曲线离心率表示形式,双曲线渐近线方程求法,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】
根据图形,说明PC是三棱锥P-OCH的高,△OCH的面积在OD=DC=2时取得最大值,求出OB【详解】AB⊥OB,可得PB⊥AB,即AB⊥面POB,所以面PAB⊥面POB.OD⊥PB,则OD⊥面PAB,OD⊥DC,OD⊥PC,又,PC⊥OC,所以PC⊥面OCD.即PC是三棱锥P-OCD的高.PC=OC=2.而△OCD的面积在OD=DC=2时取得最大值(斜边=2的直角三角形)当OD=2时,由PO=22,知∠OPB=故答案为:26【点睛】本题主要考查了圆锥的结构特征,棱锥的体积等知识,考查空间想象能力,属于中档题.14、【解析】
先由及概率和为1,解得,再利用方差公式计算.【详解】解:因为,又,
所以,.
故答案为:.【点睛】本题考查离散型随机变量的数学方差的求法,是基础题,解题时要认真审题.15、27【解析】数列{an}中,a1=1,an=an-1+(n≥2),则数列{an}为等差数列,首项为1,公差为,.16、【解析】试题分析:由正态分布曲线是关于直线对称的可知:电子元件的使用寿命服从正态分布,那么该电子元件的使用寿命超过1000小时的概率为,又,所以.故答案为.考点:正态分布.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2);(3).【解析】
(1)先根据点在直线上得和项关系式,再根据和项与通项关系求通项;(2)根据向量平行坐标表示得关系式,代入(1)结论得结果;(3)分奇偶分类讨论,再根据参变分离转化为求对应函数最值,最后根据函数最值得结果.【详解】(1)因为点在函数,所以当时,;当时,;(2)(3)为偶数时,,为奇数时,,因此【点睛】本题考查由和项求通项、向量平行坐标表示以及不等式恒成立问题,考查综合分析求解能力,属中档题.18、(1)见解析(2)【解析】试题分析:(1)函数的单调区间与导数的符号相关,而函数的导数为,故可以根据的符号讨论导数的符号,从而得到函数的单调区间.(2)若不等式在上有解,那么在上,.但在上的单调性不确定,故需分三种情况讨论.解析:(1),①当时,在上,在上单调递增;②当时,在上;在上;所以在上单调递减,在上单调递增.综上所述,当时,的单调递增区间为,当时,的单调递减区间为,单调递增区间为.(2)若在上存在,使得成立,则在上的最小值小于.①当,即时,由(1)可知在上单调递增,在上的最小值为,由,可得,②当,即时,由(1)可知在上单调递减,在上的最小值为,由,可得;③当,即时,由(1)可知在上单调递减,在上单调递增,在上的最小值为,因为,所以,即,即,不满足题意,舍去.综上所述,实数的取值范围为.点睛:函数的单调性往往需要考虑导数的符号,通常情况下,我们需要把导函数变形,找出能决定导数正负的核心代数式,然后就参数的取值范围分类讨论.又不等式的恒成立问题和有解问题也常常转化为函数的最值讨论,比如:“在上有解”可以转化为“在上,有”,而“在恒成立”可以转化为“在上,有”.19、(1);(2)证明见解析.【解析】试题分析:(1)由时,利用,结合等差数列的定义和通项公式即可得到数列的通项公式;(2)由(1)得,运用裂项相消法求和,化简整理,然后利用放缩法可证明.试题解析:(1)当n=1时,a1=S1=3;当n≥2时,an=Sn-Sn-1=n2+2n-=2n+1.当n=1时,也符合上式,故an=2n+1.(2)因为==,故Tn==【方法点晴】裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2);(3);(4);此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.20、(1)(2)【解析】
1根据条件可得,设,则然后求出范围即可;(2)根据参数的几何意义,利用一元二次方程根与系数关系式求出结果.【详解】1,在曲线上,,,设,,,,,的取值范围;2,,故曲线的直角坐标方程为:直线l的标准参数方程为为参数,代入得:设M,N两点对应的参数分别为,,,故,异号,.【点睛】本题考查了参数方程极坐标方程和直角坐标方程之间的转换,一元二次方程根和系数关系式的应用,主要考察学生的运算能力和转换能力,属基础题.21、(1)证明见解析;(2).【解析】
(1)连接交于点,连接,利用三角形中位线定理证明,由线面平行的判定定理可得结论;(2)先利用面面垂直的性质证明平面,可得点到平面的距离为,由,结合棱锥的体积公式可得结果.【详解】(1)如图,连接交于点,连接.四边形是矩形,是的中点.点为的中点,.又平面,平面,平面.(2),,.在三棱柱中,由平面,得平面平面.又平面平面,平面,点到平面的距离为,且..【点睛】本题主要考查线面平行的判定定理、以及棱锥体积,属于中档题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.22、(1)证明见详解;(2)【解析】
(1)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,利用向量法证明;
(2)设,由,求出,求出平面ABF的法向量和平面ABP的法向量,利用向量法能求出二面角的余弦值.【详解】证明:(1)∵在四棱锥P−ABCD中,PA⊥底面ABCD,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人玉器购销合同样本
- 出差安装监控合同标准文本
- 公路权益转让合同样本
- 出售液压设备合同样本
- 第06讲 被子植物的一生 2025年会考生物学专题练习(含答案)
- 2025汽车销售服务合同样本
- 会计管理合同样本
- 2025服装店租赁合同模板
- 佣金合作合同标准文本
- 2025建筑器材租赁合同模板
- 急性心肌梗死PPTPPT
- 小学生理财小知识主题班会精编ppt
- 钢架桥搭设的基本程序和方法
- 贾宝玉形象分析PPT课件(PPT 30页)
- 遵义会议ppt课件
- 国家开放大学《人文英语3》章节测试参考答案
- 高教类课件:微电影创作教程
- 阿坝州果蔬产业发展现状及展望
- 2022年班主任育人故事一等奖两篇范文
- GMP附录5中药制剂ppt课件
- 德龙自卸车合格证扫描件(原图)
评论
0/150
提交评论