版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.数列满足是数列为等比数列的()A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件2.已知的分布列为-101设,则的值为()A.4 B. C. D.13.在的展开式中,含项的系数为()A.10 B.15 C.20 D.254.给出定义:若函数在D上可导,即存在,且导函数在D上也可导,则称在D上存在二阶导函数,记,若在D上恒成立,则称在D上为凸函数.以下四个函数在上不是凸函数的是()A. B.C. D.5.已知集合,,且,则实数的取值范围为().A. B.C. D.6.函数在上的最小值和最大值分别是A. B. C. D.7.设,分别是定义在上的奇函数和偶函数,当时,,且,则不等式的解集是()A. B.C. D.8.设向量与向量垂直,且,,则下列向量与向量共线的是()A. B. C. D.9.已知向量与向量的模均为2,若,则它们的夹角是()A. B. C. D.10.若函数在其定义域内的一个子区间上不是单调函数,则实数的取值范围是()A. B. C. D.11.设集合A={x|x2-5x+6>0},B={x|x-1<0},则A∩B=A.(-∞,1) B.(-2,1)C.(-3,-1) D.(3,+∞)12.甲、乙两名运动员,在某项测试中的8次成绩如茎叶图所示,分别表示甲、乙两名运动员这项测试成绩的平均数,,分别表示甲、乙两名运动员这项测试成绩的标准差,则有()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在展开式中,常数项为_____________.(用数字作答)14.袋中有4只红球3只黑球,从袋中任取4只球,取到1只红球得1分,取到1只黑球得3分,设得分为随机变量X,则P(X≤6)=________.15.已知函数有两个极值点,,且,若存在满足等式,,且函数至多有两个零点,则实数的取值范围为__________.16.已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2,则当m=___________时,点B横坐标的绝对值最大.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)求函数的单调区间;(2)若关于的方程有实数根,求实数的取值范围.18.(12分)在平面四边形中,,,,.(1)求;(2)若,求四边形的面积.19.(12分)已知等差数列满足:,.的前n项和为.(Ⅰ)求及;(Ⅱ)令(),求数列的前项和.20.(12分)已知函数.(1)若,求函数的最大值;(2)令,讨论函数的单调区间;(3)若,正实数满足,证明.21.(12分)如图,四边形中,,,,为边的中点,现将沿折起到达的位置(折起后点记为).(1)求证:;(2)若为中点,当时,求二面角的余弦值.22.(10分)设不等式|2x-1|<1的解集为M,且a∈M,b∈M.(1)试比较ab+1与a+b的大小;(2)设maxA表示数集A中的最大数,且h=max{2
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】分析:由反例得充分性不成立,再根据等比数列性质证必要性成立.详解:因为满足,所以充分性不成立若数列为等比数列,则,即必要性成立.选B.点睛:充分、必要条件的三种判断方法.1.定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.2.等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.2、B【解析】
由的分布列,求出,再由,求得.【详解】,因为,所以.【点睛】本题考查随机变量的期望计算,对于两个随机变量,具有线性关系,直接利用公式能使运算更简洁.3、B【解析】分析:利用二项展开式的通项公式求出的第项,令的指数为2求出展开式中的系数.然后求解即可.详解:6展开式中通项
令可得,,
∴展开式中x2项的系数为1,
在的展开式中,含项的系数为:1.
故选:B.点睛:本题考查二项展开式的通项的简单直接应用.牢记公式是基础,计算准确是关键.4、D【解析】
对A,B,C,D四个选项逐个进行二次求导,判断其在上的符号即可得选项.【详解】若,则,在上,恒有;若,则,在上,恒有;若,则,在上,恒有;若,则.在上,恒有,故选D.【点睛】本题主要考查函数的求导公式,充分理解凸函数的概念是解题的关键,属基础题.5、C【解析】
由已知求得,再由,即可求得的范围,得到答案.【详解】由题意,集合,,可得,又由,所以.故选C.【点睛】本题主要考查了集合的混合运算,以及利用集合的运算求解参数的范围,其中解答中熟记集合基本运算方法是解答的关键,着重考查了推理与运算能力,属于基础题.6、A【解析】
求出f(x)的导数,利用导函数的正负,求出函数的单调区间,从而求出函数的最大值和最小值即可.【详解】函数,cosx,令>0,解得:x,令<0,解得:0≤x,∴f(x)在[0,)递减,在(,]递增,∴f(x)min=f(),而f(0)=0,f()1,故f(x)在区间[0,]上的最小值和最大值分别是:.故选:A.【点睛】本题考查了利用导数研究函数的单调性、最值问题,考查函数值的运算,属于基础题.7、D【解析】
先构造函数,再利用导函数研究函数的增减性,结合,的奇偶性判断函数的奇偶性,再结合已知可得,,即可得解.【详解】解:设,则,由当时,,则函数在为增函数,又,分别是定义在上的奇函数和偶函数,则在上为奇函数,则函数在为增函数,又,所以,则,则的解集为,即不等式的解集是,故选:D.【点睛】本题考查了函数的奇偶性及单调性,重点考查了导数的应用,属中档题.8、B【解析】
先根据向量计算出的值,然后写出的坐标表示,最后判断选项中的向量哪一个与其共线.【详解】因为向量与向量垂直,所以,解得,所以,则向量与向量共线,故选:B.【点睛】本题考查向量的垂直与共线问题,难度较易.当,若,则,若,则.9、A【解析】
由题意结合数量积的运算法则可得,据此确定其夹角即可.【详解】∵,∴,∴,故选A.【点睛】本题主要考查向量夹角的计算,向量的运算法则等知识,意在考查学生的转化能力和计算求解能力.10、B【解析】分析:求出导函数,求得极值点,函数在含有极值点的区间内不单调.详解:,此函数在上是增函数,又,因此是的极值点,它在含有的区间内不单调,此区间为B.故选B.点睛:本题考查用导数研究函数的极值,函数在不含极值点的区间内一定是单调函数,因此此只要求出极值点,含有极值点的区间就是正确的选项.11、A【解析】
先求出集合A,再求出交集.【详解】由题意得,,则.故选A.【点睛】本题考点为集合的运算,为基础题目.12、B【解析】
根据茎叶图看出两组数据,先求出两组数据的平均数,再求出两组数据的方差,比较两组数据的方差的大小就可以得到两组数据的标准差的大小.【详解】由茎叶图可看出甲的平均数是,乙的平均数是,两组数据的平均数相等.甲的方差是乙的方差是甲的标准差小于乙的标准差,故选B.【点睛】本题考查两组数据的平均数和方差的意义,是一个基础题,解题时注意平均数是反映数据的平均水平,而标准差反映波动的大小,波动越小数据越稳定.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
求出展开式的通项,利用的指数为零求出参数的值,再将参数代入通项即可得出展开式中常数项的值.【详解】展开式的通项为.令,解得.因此,展开式中的常数项为.故答案为:.【点睛】本题考查二项展开式中常数项的计算,一般利用展开式通项来求解,考查计算能力,属于基础题.14、【解析】根据题意可知取出的4只球中红球个数可能为4,3,2,1个,黑球相应个数为0,1,2,3个,其分值X相应为4,6,8,1.∴.15、【解析】分析:首先确定的范围,然后结合函数的性质整理计算即可求得最终结果.详解:由可得:,由于,故,由可知函数的单调性与函数的单调性相同:在区间上单调递增,在区间上单调递减,在区间上单调递增,很明显是函数的一个零点,则满足题意时应有:,由韦达定理有:,其中,则:,整理可得:,由于,故,则.即实数的取值范围为.点睛:本题主要考查导函数研究函数的性质,等价转化的数学思想等知识,意在考查学生的转化能力和计算求解能力.16、5【解析】分析:先根据条件得到A,B坐标间的关系,代入椭圆方程解得B的纵坐标,即得B的横坐标关于m的函数关系,最后根据二次函数性质确定最值取法.详解:设,由得因为A,B在椭圆上,所以,与对应相减得,当且仅当时取最大值.点睛:解析几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的探求来使问题得以解决.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)函数的单调递增区间为,单调递减区间为;(2)当时,方程有实数根.【解析】试题分析:(1)结合函数的解析式可得,,结合导函数与原函数的单调性的关系可得函数的单调递增区间为,单调递减区间为.(2)原问题等价于方程有实数根,构造函数,利用导函数研究函数存在零点的充要条件可得:当时,方程有实数根.试题解析:(1)依题意,得,.令,即,解得;令,即,解得,故函数的单调递增区间为,单调递减区间为.(2)由题得,.依题意,方程有实数根,即函数存在零点,又,令,得.当时,,即函数在区间上单调递减,而,,所以函数存在零点;当时,,随的变化情况如表:极小值所以为函数的极小值,也是最小值.当,即时,函数没有零点;当,即时,注意到,,所以函数存在零点.综上所述,当时,方程有实数根.点睛:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.18、(1)(2)【解析】
(1)在中由余弦定理得,再由正弦定理能求出;(2),四边形ABCD的面积,由此能求出结果.【详解】(1)在平面四边形中,,,,.中,由余弦定理可得:,∵,∴.(2)中,,【点睛】本题考查角的正弦值、四边形面积的求法,考查正弦定理、余弦定理等基础知识,考查运算求解能力,是中档题.19、(Ⅰ);(Ⅱ).【解析】试题分析:(1)设等差数列的公差为,由已知可得解得,则及可求;(2)由(1)可得,裂项求和即可试题解析:(1)设等差数列的公差为,因为,,所以有,解得,所以,.(2)由(1)知,,所以,所以,即数列的前项和.考点:等差数列的通项公式,前项和公式.裂项求和20、(1)f(x)的最大值为f(1)=1.(2)见解析(3)见解析【解析】试题分析:(Ⅰ)代入求出值,利用导数求出函数的极值,进而判断最值;(Ⅱ)求出,求出导函数,分别对参数分类讨论,确定导函数的正负,得出函数的单调性;(Ⅲ)整理方程,观察题的特点,变形得,故只需求解右式的范围即可,利用构造函数,求导的方法求出右式的最小值.试题解析:(Ⅰ)因为,所以a=-2,此时f(x)=lnx-x2+x,f'(x)=-2x+1,由f'(x)=1,得x=1,∴f(x)在(1,1)上单调递增,在(1,+∞)上单调递减,故当x=1时函数有极大值,也是最大值,所以f(x)的最大值为f(1)=1.
(Ⅱ)g(x)=f(x)-ax2-ax+1,∴g(x)=lnx-ax2-ax+x+1,当a=1时,g'(x)>1,g(x)单调递增;当a>1时,x∈(1,)时,g'(x)>1,g(x)单调递增;x∈(,+∞)时,g'(x)<1,g(x)单调递减;当a<1时,g'(x)>1,g(x)单调递增;(Ⅲ)当a=2时,f(x)=lnx+x2+x,x>1,.由f(x1)+f(x2)+x1x2=1,即lnx1+x12+x1+lnx2+x22+x2+x2x1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年暑期工劳动合同标准文本集3篇
- 番禺2025版租赁市场房源代理服务合同
- 2024结款协议合同范本
- 二零二四年国际货物销售合同:FOB条款与运输2篇
- 二零二五版高校毕业生就业指导与职业规划服务合同6篇
- 二零二五版电影剧本改编与制作投资合同范本3篇
- 2024物联网应用项目建设的合同标的
- 年度健腹椅竞争策略分析报告
- 年度全自动板框污泥脱水机产业分析报告
- 2025年度教育领域临时工招聘及教学质量合同4篇
- 第7课《中华民族一家亲》(第一课时)(说课稿)2024-2025学年统编版道德与法治五年级上册
- 2024年医销售药销售工作总结
- 急诊科十大护理课件
- 山东省济宁市2023-2024学年高一上学期1月期末物理试题(解析版)
- GB/T 44888-2024政务服务大厅智能化建设指南
- 2025年上半年河南郑州荥阳市招聘第二批政务辅助人员211人笔试重点基础提升(共500题)附带答案详解
- 山东省济南市历城区2024-2025学年七年级上学期期末数学模拟试题(无答案)
- 国家重点风景名胜区登山健身步道建设项目可行性研究报告
- 投资计划书模板计划方案
- 《接触网施工》课件 3.4.2 隧道内腕臂安装
- 2024-2025学年九年级语文上学期第三次月考模拟卷(统编版)
评论
0/150
提交评论