下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高一数学下册教案作为一名无私奉献的老师,很有必要细心设计一份教案,借助教案可以更好地组织教学活动。那么问题来了,教案应当怎么写?作者我细心为伴侣们带来了高一数学下册教案(最新4篇),盼望能够对伴侣们的写作有一些启发。
高一下册数学教案篇一
一、教学目标
1.学问与技能:把握画三视图的基本技能,丰富同学的空间想象力。
2.过程与方法:通过同学自己的亲身实践,动手作图,体会三视图的作用。
3.情感态度与价值观:提高同学空间想象力,体会三视图的作用。
二、教学重点:画出简洁几何体、简洁组合体的三视图;
难点:识别三视图所表示的空间几何体。
三、学法指导:观看、动手实践、争论、类比。
四、教学过程
(一)创设情景,揭开课题
展现庐山的风景图——“横看成岭侧看成峰,远近凹凸各不同”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体。
(二)讲授新课
1、中心投影与平行投影:
中心投影:光由一点向外散射形成的投影;
平行投影:在一束平行光线照耀下形成的投影。
正投影:在平行投影中,投影线正对着投影面。
2、三视图:
正视图:光线从几何体的前面对后面正投影,得到的投影图;
侧视图:光线从几何体的左面对右面正投影,得到的投影图;
俯视图:光线从几何体的上面对下面正投影,得到的投影图。
三视图:几何体的正视图、侧视图和俯视图统称为几何体的三视图。
三视图的画法规章:长对正,高平齐,宽相等。
长对正:正视图与俯视图的长相等,且相互对正;
高平齐:正视图与侧视图的高度相等,且相互对齐;
宽相等:俯视图与侧视图的宽度相等。
3、画长方体的三视图:
正视图、侧视图和俯视图分别是从几何体的正前方、正左方和正上方观看到有几何体的正投影图,它们都是平面图形。
长方体的三视图都是长方形,正视图和侧视图、侧视图和俯视图、俯视图和正视图都各有一条边长相等。
4、画圆柱、圆锥的三视图:
5、探究:画出底面是正方形,侧面是全等的三角形的棱锥的三视图。
(三)巩固练习
课本P15练习1、2;P20习题1.2[A组]2。
(四)归纳整理
请同学回顾发表如何作好空间几何体的三视图
(五)布置作业
课本P20习题1.2[A组]1。
高一数学下册教案篇二
课型:新授课
教学目标:
(1)理解直线与圆的位置关系的几何性质;
(2)利用平面直角坐标系解决直线与圆的位置关系;
(3)会用“数形结合”的数学思想解决问题.
教学重点、难点:
直线与圆的方程的应用.
教学过程:
一、复习引入:
问题1:如何推断直线与圆的位置关系?
问题2:如何推断圆与圆的位置关系?
直线与圆的方程在生产、生活实践以及数学中有着广泛的应用,这几节课我们将通过一些例子学习直线与圆的方程在实际生活以及平面几何等方面的应用
二、新课教学:
例1.(课本例4)图4。2-5是某圆拱形桥的示意图。这个圆的圆拱跨度AB=20m,拱高OP=4m,建筑时每间隔4m需要用一根支柱支撑,求支柱的高度(精确到0.01m)。
小结方法:用坐标法解决实际应用题的步骤:
第一步:将实际应用题转化为数学问题,建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;
其次步:通过代数运算,解决代数问题;
第三步:将代数运算结果“翻译”成实际结论,.
例2.(课本例5)已知内接于圆的四边形的对角线相互垂直,求证圆心到一边的距离等于这条边所对边长的一半。
小结方法:用坐标法解决几何问题的步骤:
第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;
其次步:通过代数运算,解决代数问题;
第三步:将代数运算结果“翻译”成几何结论.
课堂练习:课本练习第2,3,4题;
课后作业:课本习题4.2A组第8,11题。B组第1题
高一数学下册教案篇三
一、教学目标:
1、学问与技能
(1)了解空间中两条直线的位置关系;
(2)理解异面直线的概念、画法,培育同学的空间想象力量;
(3)理解并把握公理4;
(4)理解并把握等角定理;
(5)异面直线所成角的定义、范围及应用。
2、过程与方法
(1)师生的共同争论与讲授法相结合;
(2)让同学在学习过程不断归纳整理所学学问。
3、情感与价值
让同学感受到把握空间两直线关系的必要性,提高同学的学习爱好。
二、教学重点、难点
重点:1、异面直线的概念;
2、公理4及等角定理。
难点:异面直线所成角的计算。
三、学法与教学用具
1、学法:同学通过阅读教材、思索与老师沟通、概括,从而较好地完成本节课的教学目标。
2、教学用具:投影仪、投影片、长方体模型、三角板
四、教学思想
(一)创设情景、导入课题
1、通过身边诸多实物,引导同学思索、举例和相互沟通得出异面直线的概念:不同在任何一个平面内的两条直线叫做异面直线。
2、师:那么,空间两条直线有多少种位置关系?(板书课题)
(二)讲授新课
1、老师给出长方体模型,引导同学得出空间的两条直线有如下三种关系:
相交直线:同一平面内,有且只有一个公共点;
平行直线:同一平面内,没有公共点;
异面直线:不同在任何一个平面内,没有公共点。
老师再次强调异面直线不共面的特点,作图时通常用一个或两个平面衬托,如下图:
2、(1)师:在同一平面内,假如两条直线都与第三条直线平行,那么这两条直线相互平行。在空间中,是否有类似的规律?
组织同学思索:
长方体ABCD-A'B'C'D'中,BB'∥AA',DD'∥AA',BB'与DD'平行吗?
生:平行
再联系其他相应实例归纳出公理4
公理4:平行于同一条直线的两条直线相互平行。
符号表示为:设a、b、c是三条直线
a∥b
c∥b
强调:公理4实质上是说平行具有传递性,在平面、空间这共性质都适用。
公理4作用:推断空间两条直线平行的依据。
例1、空间四边形ABCD,E、F、H、G分别是边AB、BC、CD、DA的中点,求证:四边形EFGH是平行四边形
3让同学观看、思索右图:
∠ADC与A'D'C'、∠ADC与∠A'B'C'的两边分别对应平行,这两组角的大小关系如何?
生:∠ADC=A'D'C',∠ADC+∠A'B'C'=1800
老师画出更具一般性的图形,师生共同归纳出如下定理
等角定理:空间中假如两个角的两边分别对应平行,那么这两个角相等或互补。
老师强调:并非全部关于平面图形的结论都可以推广到空间中来。
4、以老师讲授为主,师生共同沟通,导出异面直线所成的角的概念。
(1)师:如图,已知异面直线a、b,经过空间中任一点O作直线a'∥a、b'∥b,我们把a'与b'所成的锐角(或直角)叫异面直线a与b所成的角(夹角)。
(2)强调:
①a'与b'所成的角的大小只由a、b的相互位置来确定,与O的选择无关,为了简便,点O一般取在两直线中的一条上;
②两条异面直线所成的角θ∈(0,);
③当两条异面直线所成的角是直角时,我们就说这两条异面直线相互垂直,记作a⊥b;
④两条直线相互垂直,有共面垂直与异面垂直两种情形;
⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。
(3)例2(教材P47页例3)
(三)课堂练习
练习1、2
(四)课堂小结在师生互动中让同学了解:
(1)本节课学习了哪些学问内容?
(2)计算异面直线所成的角应留意什么?
(五)课后作业
1、推断题:
(1)a∥bc⊥a=>c⊥b([.])
(2)a⊥cb⊥c=>a⊥b()
2、填空题:在正方体ABCD-A'B'C'D'中,与BD'成异面直线的有________条。
课后记:
高一下册数学教案篇四
教学目标:
1、结合实际问题情景,理解分层抽样的必要性和重要性;
2、学会用分层抽样的方法从总体中抽取样本;
3、并对简洁随机抽样、系统抽样及分层抽样方法进行比较,揭示其相互关系。
教学重点:
通过实例理解分层抽样的方法。
教学难点:
分层抽样的步骤。
教学过程:
一、问题情境
1、复习简洁随机抽样、系统抽样的概念、特征以及适用范围。
2、实例:某校高一、高二和高三班级分别有同学名,为了了解全校同学的视力状况,从中抽取容量为的样本,怎样抽取较为合理?
二、同学活动
能否用简洁随机抽样或系统抽样进行抽样,为什么?
指出由于不同班级的同学视力状况有肯定的差异,用简洁随机抽样或系统抽样进行抽样不能精确 反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要留意总体中个体的层次性。
由于样本的容量与总体的个体数的比为100∶2500=1∶25,
所以在各班级抽取的个体数依次是。即40,32,28。
三、建构数学
1、分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的状况,常将总体按不同的特点分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 共有个人担保合作保证金协议
- 环保项目合作框架
- 授权经销合同的签订流程
- 无担保贷款担保合同
- 劳务分包班组的合同
- 购销合同的履行与监管要点
- 中医医院药材采购合同
- 房屋买卖合同格式市场趋势
- 生产车间承包技术成果成果保护
- 钢筋模板安装分包协议
- 模具加工计划进度表-05
- 中班音乐《小雨沙沙》原版有声动态课件
- 创践-大学生创新创业实务智慧树知到答案章节测试2023年
- 数学新课程标准的核心概念有哪些?结合教学实践谈谈你的认识
- 转法学专业笔试问题及答案
- 铝单板施工组织方案
- 云南野生余甘子的分布、生境条件及保护利用,植物学论文
- 语文一年级上册课件部编版语文园地六第3课时
- GB/T 3317-1982电力机车通用技术条件
- 2023年秋电大国家开放大学会计制度设计形考答案15次新编
- GB/T 1766-2008色漆和清漆涂层老化的评级方法
评论
0/150
提交评论