版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年中考数学三轮冲刺解答题冲刺练习五LISTNUMOutlineDefault\l3解方程组:LISTNUMOutlineDefault\l3某初中学校组织200位同学参加义务植树活动.甲、乙两位同学分别调查了30位同学的植树情况,并将收集的数据进行了整理,绘制成统计表1和表2:表1:甲调查九年级30位同学植树情况每人植树棵数78910人数36156表2:乙调查三个年级各10位同学植树情况每人植树棵数678910人数363126根据以上材料回答下列问题:(1)关于于植树棵数,表1中的中位数是棵;表2中的众数是棵;(2)你认为同学(填“甲”或“乙”)所抽取的样本能更好反映此次植树活动情况;(3)在问题(2)的基础上估计本次活动200位同学一共植树多少棵?LISTNUMOutlineDefault\l3学校运动会上,九(1)班啦啦队买了两种矿泉水,其中甲种矿泉水共花费80元,乙种矿泉水共花费60元.甲种矿泉水比乙种矿泉水多买20瓶,且乙种矿泉水的价格是甲种矿泉水价格的1.5倍.求甲、乙两种矿泉水的价格.LISTNUMOutlineDefault\l3如图,已知A1,A2,A3,…,An是x轴上的点,且OA1=A1A2=A2A3=…=An-1An=1,分别过点A1,A2,A3,…,An作x轴的垂线交反比例函数y=eq\f(1,x)(x>0)的图象于点B1,B2,B3,…,Bn,过点B2作B2P1⊥A1B1于点P1,过点B3作B3P2⊥A2B2于点P2……过点Bn+1作Bn+1Pn⊥AnBn于点Pn,记△B1P1B2的面积为S1,△B2P2B3的面积为S2……△BnPnBn+1的面积为Sn.求:(1)S1=________;(2)S10=________;(3)S1+S2+S3+…+Sn的和.LISTNUMOutlineDefault\l3如图,已知AC是矩形ABCD的对角线,AC的垂直平分线EF分别交BC.AD于点E和F,EF交AC于点O.(1)求证:四边形AECF是菱形;(2)若AC=8,EF=6,求BC的长.LISTNUMOutlineDefault\l3如图,甲船在港口P的南偏东60°方向,距港口30海里的A处,沿AP方向以每小时5海里的速度驶向港口P;乙船从港口P出发,沿南偏西45°方向驶离港口P.现两船同时出发,2小时后甲船到达B处,乙船到达C处,此时乙船恰好在甲船的正西方向,求乙船的航行距离(eq\r(2)≈1.41,eq\r(3)≈1.73,结果保留整数).LISTNUMOutlineDefault\l3如图,△ABC中,AB=AC,点D为BC边上一点,且DA=DC,过A,B,D三点作⊙O,AE是⊙O的直径,连接DE.(1)求证:AC是⊙O的切线;(2)若sinC=eq\f(4,5),AC=12,求⊙O的直径.LISTNUMOutlineDefault\l3二次函数y=ax2+bx+4的图象与x轴交于两点A、B,与y轴交于点C,且A(﹣1,0)、B(4,0).(1)求此二次函数的表达式;(2)①如图1,抛物线的对称轴m与x轴交于点E,CD⊥m,垂足为D,点F(﹣,0),动点N在线段DE上运动,连接CF、CN、FN,若以点C、D、N为顶点的三角形与△FEN相似,求点N的坐标;②如图2,点M在抛物线上,且点M的横坐标是1,将射线MA绕点M逆时针旋转45°,交抛物线于点P,求点P的坐标;(3)已知Q在y轴上,T为二次函数对称轴上一点,且△QOT为等腰三角形,若符合条件的Q恰好有2个,直接写出T的坐标.
LISTNUMOutlineDefault\l3\s0答案LISTNUMOutlineDefault\l3解:x=2,y=3.LISTNUMOutlineDefault\l3解:(1)表1中30位同学植树情况的中位数是9棵,表2中的众数是9棵;故答案为:9,9;(2)乙同学所抽取的样本能更好反映此次植树活动情况;故答案为:乙;(3)由题意可得:(3×6+6×7+3×8+12×9+6×10)÷30×200=1680(棵),答:本次活动200位同学一共植树1680棵.LISTNUMOutlineDefault\l3解:设甲种矿泉水的价格为x元,则乙种矿泉水价格为1.5x,由题意得:﹣=20,解得:x=2,经检验x=2是原分式方程的解,则1.5x=1.5×2=3,答:甲、乙两种矿泉水的价格分别是2元、3元.LISTNUMOutlineDefault\l3解:(1)eq\f(1,4)(2)eq\f(1,220)(3)∵OA1=A1A2=A2A3=…=An-1An=1,∴设点B1的坐标为(1,y1),点B2的坐标为(2,y2),点B3的坐标为(3,y3)……点Bn的坐标为(n,yn).∵点B1,B2,B3,…,Bn在反比例函数y=eq\f(1,x)(x>0)的图象上,∴y1=1,y2=eq\f(1,2),y3=eq\f(1,3),…,yn=eq\f(1,n),∴S1=eq\f(1,2)×1×(y1-y2)=eq\f(1,2)(1-eq\f(1,2)),S2=eq\f(1,2)×1×(y2-y3)=eq\f(1,2)×(eq\f(1,2)-eq\f(1,3)),S3=eq\f(1,2)×1×(y3-y4),…,∴S1+S2+S3+…+Sn=eq\f(n,2(n+1)).LISTNUMOutlineDefault\l3(1)证明:∵四边形ABCD是矩形∴AD∥BC,∴∠DAC=∠ACB,∵EF垂直平分AC,∴AF=FC,AE=EC,∴∠FAC=∠FCA,∴∠FCA=∠ACB,∵∠FCA+∠CFE=90°,∠ACB+∠CEF=90°,∴∠CFE=∠CEF,∴CE=CF,∴AF=FC=CE=AE,∴四边形AECF是菱形.(2)解:∵四边形AECF是菱形∴OC=AC=4,OE=EF=3∴CE===5,∵∠COE=∠ABC=90,∠OCE=∠BCA,∴△COE∽△CBA,∴=,∴=,∴BC=6.4.LISTNUMOutlineDefault\l3解:LISTNUMOutlineDefault\l3证明:(1)∵AB=AC,AD=DC,∴∠C=∠B,∠1=∠C,∴∠1=∠B,又∵∠E=∠B,∴∠1=∠E,∵AE是⊙O的直径,∴∠ADE=90°,∴∠E+∠EAD=90°,∴∠1+∠EAD=90°,即∠EAC=90°,∴AE⊥AC,∴AC是⊙O的切线;(2)过点D作DF⊥AC于点F,如图,∵DA=DC,∴CF=eq\f(1,2)AC=3,在Rt△CDF中,∵sinC==,设DF=4x,DC=5x,∴CF=3x,∴3x=3,解得x=1,∴DC=5,∴AD=5,∵∠ADE=∠DFC=90°,∠E=∠C,∴△ADE∽△DFC,∴=,即=,解得AE=eq\f(25,4),即⊙O的直径为eq\f(25,4).LISTNUMOutlineDefault\l3解:(1)y=ax2+bx+4,当x=0时,y=4,∴C(0,4),设抛物线的解析式为y=a(x+1)(x−4),将点C的坐标代入得:−4a=4,解得a=−1,∴抛物线的解析式为y=−x2+3x+4;(2)①如图1,抛物线的对称轴是:x=eq\f(3,2),∴CD=eq\f(3,2),EF=eq\f(8,3),设点N的坐标为(eq\f(3,2),a)则ND=4−a,NE=a,当△CDN∽△FEN时,=,即=,解得a=,∴点N的坐标为(,);当△CDN∽△NEF时,=,解得:a1=a2=2,∴点N的坐标为(eq\f(3,2),2),综上所述,点N的坐标为(,)或(,2);②如图2所示:过点A作GH∥y轴,过点M作MG⊥GH于G,过点A作AE⊥AM,交MP于点E,∵∠AMP=45°,∠MAE=90°,∴△AEM是等腰直角三角形,∴AM=AE,将x=1代入抛物线的解析式得:y=6,∴点M的坐标为(1,6),∴MG=2,AG=6,∵∠GAM+∠EAH=90°,∠EAH+∠AEH=90°,∴∠GAM=∠AEH,∵∠G=∠H=90°,∴△MGA≌△AHE(AAS),∴EH=AG=6,AH=GM=2,∴E(5,﹣2),设ME的解析式为y=kx+b,将点A和点E的坐标代入得:,解得:,∴直线EA的解析式为y=−2x+8,﹣2x+8=﹣x2+3x+4,解得:x=1(舍)或x=4,将x=4代入y=−2x+8得:y=0,∴点P的坐标为(4,0);(3)分种情况:①如图3,当T在x轴上时,满足条件,此时T(eq\f(3,2),0);②如图4,当T在x轴的上方时,∵△QOT为等腰三角形,且符合条件的Q恰好有2个,∴OT=OQ2=OQ1=Q1T,∴△OQ1T是等边三角形,∴∠TOQ1=60°,∴∠BOT=30°,∵OE=eq\f(3,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年规范卖方购销协议法律模板版
- 地下车位购置协议模板2024年
- 2024专业涉外贷款协议法律文件版
- 留学保证合同模板
- 淘宝店进货合同模板
- 学校钢琴采购合同模板
- 饮料市场运营合同模板
- 增值服务新增合同模板
- 罗湖生鲜配送合同模板
- 文员施工合同模板
- 浙江省9+1高中联盟2022-2023学年高一上学期11月期中化学试题 含解析
- 2023-2024学年湖北省武汉市硚口区八年级(上)期中物理试卷
- 人教版七年级数学上学期《1.4-有理数的乘除法》同步练习卷
- 2024年安全员A证理论考试1000题及答案
- 《中医基础理论》课程教案
- 北师大版生物八年级上册 第20章 第1节 遗传和变异现象(1)(教案)
- 小学思政课《爱国主义教育》
- 服务器设备到货验收
- 水利水电工程质量监督流程图
- 电子商务考试小抄【已排版】
- 儿童行为评估
评论
0/150
提交评论