山东省锦泽技工学校2022-2023学年高一数学第二学期期末考试模拟试题含解析_第1页
山东省锦泽技工学校2022-2023学年高一数学第二学期期末考试模拟试题含解析_第2页
山东省锦泽技工学校2022-2023学年高一数学第二学期期末考试模拟试题含解析_第3页
山东省锦泽技工学校2022-2023学年高一数学第二学期期末考试模拟试题含解析_第4页
山东省锦泽技工学校2022-2023学年高一数学第二学期期末考试模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,是平面,m,n是直线,则下列命题不正确的是()A.若,则 B.若,则C.若,则 D.若,则2.从装有红球和绿球的口袋内任取2个球(其中红球和绿球都多于2个),那么互斥而不对立的两个事件是()A.至少有一个红球,至少有一个绿球B.恰有一个红球,恰有两个绿球C.至少有一个红球,都是红球D.至少有一个红球,都是绿球3.直线的倾斜角不可能为()A. B. C. D.4.,,是空间三条不同的直线,则下列命题正确的是A., B.,C.,,共面 D.,,共点,,共面5.已知,且,则的最小值为()A.8 B.12 C.16 D.206.已知圆:关于直线对称的圆为圆:,则直线的方程为A. B. C. D.7.若函数有零点,则实数的取值范围为()A. B. C. D.8.圆的圆心坐标和半径分别为()A.,2 B.,2 C.,4 D.,49.函数的图象与函数的图象的交点个数为()A.3 B.2 C.1 D.010.某几何体三视图如图所示,则该几何体中的棱与面相互平行的有()A.2对 B.3对 C.4对 D.5对二、填空题:本大题共6小题,每小题5分,共30分。11.在直角坐标系中,直线与直线都经过点,若,则直线的一般方程是_____.12.已知向量,满足,与的夹角为,则在上的投影是;13.函数的定义域是________14.不等式的解集为______.15.已知数列的前项和是,且,则______.(写出两个即可)16.在中,,是线段上的点,,若的面积为,当取到最大值时,___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线l经过点,并且其倾斜角等于直线的倾斜角的2倍.求直线l的方程.18.“我将来要当一名麦田里的守望者,有那么一群孩子在一块麦田里玩,几千万的小孩子,附近没有一个大人,我是说……除了我”《麦田里的守望者》中的主人公霍尔顿将自己的精神生活寄托于那广阔无垠的麦田.假设霍尔顿在一块成凸四边形的麦田里成为守望者,如图所示,为了分割麦田,他将连接,设中边所对的角为,中边所对的角为,经测量已知,.(1)霍尔顿发现无论多长,为一个定值,请你验证霍尔顿的结论,并求出这个定值;(2)霍尔顿发现麦田的生长于土地面积的平方呈正相关,记与的面积分别为和,为了更好地规划麦田,请你帮助霍尔顿求出的最大值.19.在三棱柱中,平面ABC,,,D,E分别为AB,中点.(Ⅰ)求证:平面;(Ⅱ)求证:四边形为平行四边形;(Ⅲ)求证:平面平面.20.△ABC中,a=7,c=3,且=.(1)求b;(2)求∠A.21.已知函数.(1)求的最小正周期;(2)当时,求的值域.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

由题意找到反例即可确定错误的选项.【详解】如图所示,在正方体中,取直线m为,平面为,满足,取平面为平面,则的交线为,很明显m和n为异面直线,不满足,选项D错误;如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于这个平面,所以A正确;如果两个平面与同一条直线垂直,则这两个平面平行,所以B正确;由A选项和面面垂直的判定定理可得C也正确.本题答案为D.【点睛】本题主要考查线面关系有关命题真假的判断,意在考查学生的转化能力和逻辑推理能力,属基础题.2、B【解析】由于从口袋中任取2个球有三个事件,恰有一个红球,恰有两个绿球,一红球和一绿球.所以恰有一个红球,恰有两个绿球是互斥而不对立的两个事件.因而应选B.3、D【解析】

根据直线方程,分类讨论求得直线的斜率的取值范围,进而根据倾斜角和斜率的关系,即可求解,得到答案.【详解】由题意,可得当时,直线方程为,此时倾斜角为;当时,直线方程化为,则斜率为:,即,又由,解得或,又由且,所以倾斜角的范围为,显然A,B都符合,只有D不符合,故选D.【点睛】本题主要考查了直线方程的应用,以及直线的倾斜角和斜率的关系,着重考查了分类讨论思想,以及推理与运算能力.4、B【解析】

解:因为如果一条直线平行于两条垂线中的一条,必定垂直于另一条.选项A,可能相交.选项C中,可能不共面,比如三棱柱的三条侧棱,选项D,三线共点,可能是棱锥的三条棱,因此错误.选B.5、C【解析】

由题意可得,则,展开后利用基本不等式,即可求出结果.【详解】因为,且,即为,则,当且仅当,即取得等号,则的最小值为.故选:C.【点睛】本题考查基本不等式的应用,注意等号成立的条件,考查运算能力,属于中档题.6、A【解析】

根据对称性,求得,求得圆的圆心坐标,再根据直线l为线段C1C2的垂直平分线,求得直线的斜率,即可求解,得到答案.【详解】由题意,圆的方程,可化为,根据对称性,可得:,解得:或(舍去,此时半径的平方小于0,不符合题意),此时C1(0,0),C2(-1,2),直线C1C2的斜率为:,由圆C1和圆C2关于直线l对称可知:直线l为线段C1C2的垂直平分线,所以,解得,直线l又经过线段C1C2的中点(,1),所以直线l的方程为:,化简得:,故选A【点睛】本题主要考查了圆与圆的位置关系的应用,其中解答中熟记两圆的位置关系,合理应用圆对称性是解答本题的关键,其中着重考查了推理与运算能力,属于基础题.7、D【解析】

令,得,再令,得出,并构造函数,将问题转化为直线与函数在区间有交点,利用数形结合思想可得出实数的取值范围.【详解】令,得,,令,则,所以,,构造函数,其中,由于,,,所以,当时,直线与函数在区间有交点,因此,实数的取值范围是,故选D.【点睛】本题考查函数的零点问题,在求解含参函数零点的问题时,若函数中只含有单一参数,可以采用参变量分离法转化为参数直线与定函数图象的交点个数问题,难点在于利用换元法将函数解析式化简,考查数形结合思想,属于中等题.8、B【解析】试题分析:,所以圆心坐标和半径分别为(2,0)和2,选B.考点:圆标准方程9、B【解析】由已知g(x)=(x-2)2+1,所以其顶点为(2,1),又f(2)=2ln2∈(1,2),可知点(2,1)位于函数f(x)=2lnx图象的下方,故函数f(x)=2lnx的图象与函数g(x)=x2-4x+5的图象有2个交点.10、C【解析】

本道题结合三视图,还原直观图,结合直线与平面判定,即可。【详解】结合三视图,还原直观图,得到AB平行平面OCD,DC平行平面OBA,BC平行平面ODA,DA平行平面OBC,故有4对。故选C。【点睛】本道题考查了三视图还原直观图,难度中等。二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

点代入的方程求出k,再由求出直线的斜率,即可写出直线的点斜式方程.【详解】将点代入直线得,,解得,又,,于是的方程为,整理得.故答案为:【点睛】本题考查直线的方程,属于基础题.12、1【解析】考查向量的投影定义,在上的投影等于的模乘以两向量夹角的余弦值13、【解析】

根据的值域为求解即可.【详解】由题.故定义域为.故答案为:【点睛】本题主要考查了反三角函数的定义域,属于基础题型.14、【解析】

根据一元二次不等式的解法直接求解可得结果.【详解】由得:即不等式的解集为故答案为:【点睛】本题考查一元二次不等式的求解问题,属于基础题.15、或【解析】

利用已知求的公式,即可算出结果.【详解】(1)当,得,∴,∴.(2)当时,,两式作差得,,化简得,∴或,即(常数)或,当(常数)时,数列是以1为首项,2为公差的等差数列,所以;当时,数列是以1为首项,﹣1为公比的等比数列,所以.【点睛】本题主要考查利用与的关系公式,即,求的方法应用.16、【解析】

由三角形的面积公式得出,设,由可得出,利用基本不等式可求出的值,利用等号成立可得出、的值,再利用余弦利用可得出的值.【详解】由题意可得,解得,设,则,可得,由基本不等式可得,当且仅当时,取得最大值,,,由余弦定理得,解得.故答案为.【点睛】本题考查余弦定理解三角形,同时也考查了三角形的面积公式以及利用基本不等式求最值,在利用基本不等式求最值时,需要结合已知条件得出定值条件,同时要注意等号成立的条件,考查分析问题和解决问题的能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】

求出直线的倾斜角,可得所求直线的倾斜角,从而可得斜率,再利用点斜式可得结果.【详解】因为直线的斜率为,所以其倾斜角为30°,所以,所求直线的倾斜角为60°故所求直线的斜率为,又所求直线经过点,所以其方程为,即,故答案为:.【点睛】本题主要考查直线的斜率与倾斜角,考查了直线点斜式方程的应用,意在考查对基础知识的掌握情况,属于基础题.18、(1);(2).【解析】

(1)在和中分别对使用余弦定理,可推出与的关系,即可得出是一个定值;(2)求出的表达式,利用二次函数的基本性质以及余弦函数值的取范围,可得出的最大值.【详解】(1)在中,由余弦定理得,在中,由余弦定理得,,则,;(2),,则,由(1)知:,代入上式得:,配方得:,当时,取到最大值.【点睛】本题考查余弦定理的应用、三角形面积的求法以及二次函数最值的求解,解题的关键就是利用题中结论将问题转化为二次函数来求解,考查运算求解能力,属于中等题.19、(Ⅰ)见解析(Ⅱ)见解析(Ⅲ)见解析【解析】

(Ⅰ)只需证明,,即可得平面;(Ⅱ)可得四边形为平行四边形,,,即可得四边形为平行四边形;(Ⅲ)易得平面,即可得平面平面.【详解】(Ⅰ)∵平面,∴,又,,而,∴平面.(Ⅱ)∵、分别为、的中点,∴,,即四边形为平行四边形,∴,,∴四边形为平行四边形.(Ⅲ)∵,为中点,∴,又∵,且,∴平面,而平面,∴平面平面.【点睛】本题考查了空间点、线、面位置关系,属于基础题.20、(1);(2)∠A=120°.【解析】

由正弦定理求得b,由余弦定理求得cos∠A,进而求出∠A的值.【详解】(1)由正弦定理得=可得,==,所以b==1.(2)由余弦定理得cosA===,又因为,所以∠A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论