信息的度量与应用_第1页
信息的度量与应用_第2页
信息的度量与应用_第3页
信息的度量与应用_第4页
信息的度量与应用_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

信息的度量与应用第一页,共二十七页,2022年,8月28日几个例子:例12

当你要到大会堂去找某一个人时,甲告诉你两条消息:(1)此人不坐在前十排,(2)他也不坐在后十排;乙只告诉你一条消息:此人坐在第十五排。问谁提供的信息量大?乙虽然只提供了一条消息,但这一条消息对此人在什么位置上这一不确定性消除得更多,所以后者包含的信息量应比前者提供的两条消息所包含的总信息量更大例13

假如在盛夏季节气象台突然预报“明天无雪”的消息。在明天是否下雪的问题上,根本不存在不确定性,所以这条消息包含的信息量为零。第二页,共二十七页,2022年,8月28日是否存在信息量的度量公式基于前面的观点,美国贝尔实验室的学者香农(Shannon)应用概率论知识和逻辑方法推导出了信息量的计算公式Inhiswords"Ijustwonderedhowthingswereputtogether."ClaudeElwoodShannon(April30,1916-February24,2001)hasbeencalled"thefatherofinformationtheory".第三页,共二十七页,2022年,8月28日Shannon提出的四条基本性质(不妨称它们为公理)公理1信息量是该事件发生概率的连续函数公理2如果事件A发生必有事件B发生,则得知事件A发生的信息量大于或等于得知事件B发生的信息量。公理3如果事件A和事件B的发生是相互独立的,则获知A、B事件将同时发生的信息量应为单独获知两事件发生的信息量之和。公理4任何信息的信息量均是有限的。将某事件发生的信息记为M,该事件发生的概率记为p,记M的信息量为I(M)。上述公理怎样推出信息量的计算公式呢第四页,共二十七页,2022年,8月28日定理11.2

满足公理1—公理4的信息量计算公式为I(M)=-Clogap,其中C是任意正常数,对数之底a可取任意为不为1的正实数。证明:由公理1I(M)=f(p),函数f连续。由公理2若A发生必有B发生,则pA≤pB,有f(pA)≥f(PB),故函数f是单调不增的。由公理3若A、B是两个独立事件,则A、B同时发生的概率为pApB,有f(PAPB)=f(pA)+f(pB)。先作变量替换令p=a-q,即q=-logaP记

,又有:,g亦为连续函数。

第五页,共二十七页,2022年,8月28日g(x+y)=g(x)+g(y)的连续函数有怎样的性质

首先,由g(0)=g(0+0)=2g(0)得出g(0)=0或g(0)=∞。但由公理4,后式不能成立,故必有g(0)=0。记g(1)=C,容易求得g(2)=2C,g(3)=3C,…,一般地,有g(n)=nC。进而

,可得。于是对一切正有理数m/n,g(m/n)=(m/n)C。由连续性可知:对一切非负实数x,有g(x)=Cx

当x取负实数时,由g(x)+g(-x)=g(0)=0,可得出g(x)=―g(―x)=cx也成立,从而对一切实数x,g(x)=Cx,故g(q)=Cq。现作逆变换q=-logap,

得I(M)=f(P)=-ClogaP(11.3)

证毕。

第六页,共二十七页,2022年,8月28日各种信息量单位若取a=2,C=1,此时信息量单位称为比特若取a=10,C=1,此时信息量单位称为迪吉特若取a=e,C=1,此时信息量单位称为奈特第七页,共二十七页,2022年,8月28日例14

设剧院有1280个座位,分为32排,每排40座。现欲从中找出某人,求以下信息的信息量。(i)某人在第十排;(ii)某人在第15座;(iii)某人在第十排第15座。解:

在未知任何信息的情况下,此人在各排的概率可以认为是相等的,他坐在各座号上的概率也可以认为是相等的,故

(i)“某人在第十排”包含的信息量为

(比特)

(ii)“某人在第15座”包含的信息量为

(比特)

(iii)“某人在第十排第15座”包含的信息量为

(比特)5bit+5.32bit=10.32bit这一例子反映了对完全独立的几条信息,其总信息量等于各条信息的信息量之和。对于相应不独立的信息,要计算在已获得某信息后其余信息的信息量时,需要用到条件概率公式,可以参阅信息论书籍。第八页,共二十七页,2022年,8月28日

至此,我们已经引入了信息度量的定量公式。如前所述,它是信息对消除问题的不确定性的度量。这种讲法似乎有点难以为人们所接受,其实,这只是人们的习惯在起作用。这里,我们不妨来作一比较。在人们搞清热的奥秘以前,温度也是一个较为抽象的概念,因它实质上是物体分子运动平均速度的一种映。人们天生就知道冷和热,但如何来度量它却曾经是一个难题。只有在解决了这一问题以后,以定量分析为主的热力学才能得到飞速的发展。信息问题也是这样,人们对各种信息包含的实质“内容”究竟有多少往往也有一个直观的感觉,但用什么方法来度量它,却比“今天15度”这样的讲法更不易理解,因为它是通过较为抽象的概率来计算的。第九页,共二十七页,2022年,8月28日平均信息量(熵)问题

设某一实验可能有N种结果,它们出现的概率分别为p1,…,pN,则事先告诉你将出现第i种结果的信息,其信息量为-log2pi,而该实验的不确定性则可用这组信息的平均信息量(或熵)来表示例15

投掷一枚骼子的结果有六种,即出现1—6点、出现每种情况的概率均为1/6,故熵H=log26≈2.585(比特)。

投掷一枚硬币的结果为正、反面两种,出现的概率均为1/2,故熵H=log22=1(比特)。向石块上猛摔一只鸡蛋,其结果必然是将鸡蛋摔破,出现的概率为1,故熵H=log21=0从例子可以看出,熵实质上反映的是问题的“模糊度”,熵为零时问题是完全清楚的,熵越大则问题的模糊程度也越大第十页,共二十七页,2022年,8月28日离散型概率分布的随机试验,熵的定义为:(11.5)连续型概率分布的随机试验,熵的定义为:

(11.6)熵具有哪些有趣的性质定理11.3

若实验仅有有限结果S1,…,Sn,其发生的概率分别为P1,…,Pn,则当时,此实验具有最大熵。此定理既可化为条件极值问题证明之,也可以利用凸函数性质来证明,请大家自己去完成第十一页,共二十七页,2022年,8月28日定理9.4

若实验是连续型随机试验,其概率分布P(x)在[a,b]区间以外均为零,则当P(x)平均分布时具有最大熵。定理9.5

对于一般连续型随机试验,在方差一定的前提下,正态分布具有最大的熵。

定理9.6

最大熵原理,即受到相互独立且均匀而小的随机因素影响的系统,其状态的概率分布将使系统的熵最大。上述结果并非某种巧合。根据概率论里的中心极限定理,若试验结果受到大量相互独立的随机因素的影响,且每一因素的影响均不突出时,试验结果服从正态分布。最大熵原理则说明,自然现象总是不均匀逐步趋于均匀的,在不加任何限止的情况下,系统将处于熵最大的均匀状态。第十二页,共二十七页,2022年,8月28日例16

有12个外表相同的硬币,已知其中有一个是假的,可能轻些也可能重些。现要求用没有砝码的天平在最少次数中找出假币,问应当怎样称法。

解假币可轻可重,每枚硬币都可能是假币。故此问题共有24种情况,每种情况的概率为1/24。所以此问题的熵为log224。确定最少次数的下界实验最多可能出现三种结果,根据定理11.3,这种实验在可能出现的各种事件具有相等的概率时,所提供的平均信息量最大,故实验提供的平均信息量不超过log23。

设最少需称k次,则这k次实验提供的总信息量不超过klog23=log23k,又问题的模糊度(熵)为log224

必要条件:log23k≥log224,得k≥3。第十三页,共二十七页,2022年,8月28日称三次足够了吗?实验方法:使每次实验提供尽可能大的平均信息量。

第一次:将12枚硬币平分成三堆,取两堆称,出现两中情况情况1两堆重量相等假币在未秤的4枚中。任取其中的3枚加上从已秤过的8枚中任取的1枚,平分成两堆称。出现两种情况情况1.1两堆重量相等最后剩下的一枚是假币,再称一次知其比真币轻还是重。情况1.2两堆重量不相等设右重左轻,并设真币在左边,若假币在右边,则比真币重,若在左边,则轻。取右边两个称。第十四页,共二十七页,2022年,8月28日情况2两堆重量不相等设右边较重。先从左边取出两枚,再将右边的取两枚放到左边,将原来左边的两枚中取出一枚放于右边情况2.1两堆重量相等取出的两枚中轻的为假币,再称一次即可找出假币。情况2.2两堆重量不相等若右边较重,则假币在右边原来的两枚及左边未动过的一枚中(若为前者,则假币偏重;若为后者,则假币偏轻),于是再称一次即可找出假币。若第二次称时左边较重,则假币必在交换位置的三枚中,可类似区分真伪。三次是最少次数!第十五页,共二十七页,2022年,8月28日英文的熵是多少呢?例17

在人类活动中,大量信息是通过文字或语言来表达的,而文学或语言则是一串符号的组合。据此,我们可以计算出每一语种里每一符号的平均信息量。例如,表11-2、表11-3、表11-4分别是英语、德语和俄语中每一符号(字母与空格,标点符号不计)在文章中出现的概率的统计结果(汉语因符号繁多,难以统计)第十六页,共二十七页,2022年,8月28日表11-2(英语)符号iPi符号iPi符号Pi符号Pi空格ETOANI0.20.1050.0720.06540.0630.0590.065RSHDLCF0.0540.0520.0470.0350.0290.0230.0225UMPYWGV0.02250.0210.01750.0120.0120.0110.008BKXJQZ0.0050.0030.0020.0010.0010.001第十七页,共二十七页,2022年,8月28日表11-3(德语)符号iPi符号iPi符号Pi符号Pi空格ENSIRA

0.1440.1440.08650.06460.06280.06220.0594DTUHLCG0.05460.05360.04220.03610.03450.02550.0236OMBWZVF0.02110.01720.01380.01130.00920.00790.0078KPJJQY0.00710.00670.00280.00080.00050.0000第十八页,共二十七页,2022年,8月28日表11-4(俄语)符号iPi符号iPi符号Pi符号Pi空格OEЁAИTHC

0.1750.0900.0720.0620.0620.0530.0530.045PBЛКМДПу

0.0400.0380.0350.0280.0260.0250.0230.021ЯЫэъьБГЧй

0.0180.0160.0160.0140.0140.0130.0120.010ХЖЮЩЦШЭФ

0.0090.0070.0060.0060.0040.0030.0030.002第十九页,共二十七页,2022年,8月28日以英文为例,可计算得:

(比特/每符号)

对于有27个符号的信息源,可能达到的最大平均信息量为:

(比特/每符号)由此可计算出英语表达的多余度为:(即15%)英文的多余度第二十页,共二十七页,2022年,8月28日事实上,英语在表达意思上的确存在着富余。例如Q后出现U的概率几乎是1,T后出现H的概率也很大,等等。这种多余是完全必要的,没有多余度的语言是死板的,没有文采的,它是存在语法的必要条件。但对于电报编码、计算机文字处理来讲,这种多余度的存在常常会造成浪费。有人在上述讨论的基础上研究了符号编码问题,使得每一符号的平均信息量达到十分接近Hmax的程度,但由于译电过于复杂,这种方法尚未实际应用。第二十一页,共二十七页,2022年,8月28日信息通道的容量问题问题背景:

信息的传递是需要时间的。用n个符号S1、…、Sn来表达信息,各符号传递所需时间是各不相同的,设分别为t1、…、tn,并设各符号出现的概率分别为p1、…、pn。这样,就出现了两方面的问题。一、pi是确定的,如何缩短传递确定信息所需的时间。二、ti是确定的,如何使单位时间传递的平均信息量最大。单位时间内信息通道能够传递的最大平均信息量称为此信息通道的容量

第二十二页,共二十七页,2022年,8月28日如何求信息通道的容量?每一符号的平均信息量为:每一符号所需的平均时间为:故单位时间内传递的平均信息量应为:第二十三页,共二十七页,2022年,8月28日问题化为:(11.7)利用拉格朗日乘子法,(11.7)式可化为无约束极值问题:

(11.8)记(11.8)式的目标函数为f(p,λ),即求解方程组:(11.9)第二十四页,共二十七页,2022年,8月28日方程组(11.9)的解为:

由于

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论