




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年江苏省连云港市普通高校高职单招数学二模测试卷(含答案)学校:________班级:________姓名:________考号:________
一、单选题(20题)1.在△ABC中,角A,B,C所对边为a,b,c,“A>B”是a>b的()A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件
2.以坐标轴为对称轴,离心率为,半长轴为3的椭圆方程是()A.
B.或
C.
D.或
3.A.1B.2C.3D.4
4.A.B.C.D.
5.若f(x)=logax(a>0且a≠1)的图像与g(x)=logbx(b>0,b≠1)的关于x轴对称,则下列正确的是()A.a>bB.a=bC.a<bD.AB=1
6.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()A.y=1/xB.y=ex
C.y=-x2+1D.y=lgx
7.顶点坐标为(-2,-3),焦点为F(-4,3)的抛物线方程是()A.(y-3)2=-4(x+2)
B.(y+3)2=4(x+2)
C.(y-3)2=-8(x+2)
D.(y+3)2=-8(x+2)
8.为了了解全校240名学生的身高情况,从中抽取240名学生进行测量,下列说法正确的是()A.总体是240B.个体是每-个学生C.样本是40名学生D.样本容量是40
9.下列结论中,正确的是A.{0}是空集
B.C.D.
10.函数的定义域为()A.(0,2)B.(0,2]C.(2,+∞)D.[2,+∞)
11.“x=-1”是“x2-1=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件
12.A.3/5B.-3/5C.4/5D.-4/5
13.已知函数f(x)=sin(2x+3π/2)(x∈R),下面结论错误的是()A.函数f(x)的最小正周期为π
B.函数f(x)是偶函数
C.函数f(x)是图象关于直线x=π/4对称
D.函数f(x)在区间[0,π/2]上是增函数
14.A.B.C.D.
15.已知互相垂直的平面α,β交于直线l若直线m,n满足m⊥a,n⊥β则()A.m//LB.m//nC.n⊥LD.m⊥n
16.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法
17.由直线l1:3x+4y-7=0与直线l2:6x+8y+1=0间的距离为()A.8/5B.3/2C.4D.8
18.设集合U={1,2,3,4,5,6},M={1,3,5},则C∪M=()A.{2,4,6}B.{1,3,5}C.{1,2,4}D.U
19.己知集合A={x|x>0},B={x|-2<x<1},则A∪B等于()A.{x|0<x<1}B.{x|x>0}C.{x|-2<x<1}D.{x|x>-2}
20.A.B.C.
二、填空题(20题)21.若lgx=-1,则x=______.
22.1+3+5+…+(2n-b)=_____.
23.
24.
25.若f(X)=,则f(2)=
。
26.若展开式中各项系数的和为128,则展开式中x2项的系数为_____.
27.
28.
29.
30.
31.若函数_____.
32.设{an}是公比为q的等比数列,且a2=2,a4=4成等差数列,则q=
。
33.
34.秦九昭是我国南宋时期的数学家,他在所著的《数学九章》中提出的多项式求值的秦九昭算法,至今仍是比较先进的算法,如图所示的程序框图给出了利用秦九昭算法求某多项式值的一个实例,若输入n,x的值分别为3,4,则输出v的值为________.
35.到x轴的距离等于3的点的轨迹方程是_____.
36.
37.(x+2)6的展开式中x3的系数为
。
38.函数y=3sin(2x+1)的最小正周期为
。
39.已知(2,0)是双曲线x2-y2/b2=1(b>0)的焦点,则b=______.
40.已知i为虚数单位,则|3+2i|=______.
三、计算题(5题)41.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.
42.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.
43.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.
44.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.
45.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.
四、简答题(5题)46.在ABC中,BC=,AC=3,sinC=2sinA(1)求AB的值(2)求的值
47.三个数a,b,c成等差数列,公差为3,又a,b+1,c+6成等比数列,求a,b,c。
48.以点(0,3)为顶点,以y轴为对称轴的拋物线的准线与双曲线3x2-y2+12=0的一条准线重合,求抛物线的方程。
49.在1,2,3三个数字组成无重复数字的所有三位数中,随机抽取一个数,求:(1)此三位数是偶数的概率;(2)此三位数中奇数相邻的概率.
50.由三个正数组成的等比数列,他们的倒数和是,求这三个数
五、解答题(5题)51.如图,一辆汽车在一条水平的公路上向正西行驶,在A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,求此山的高度CD。
52.为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是().A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样
53.已知函数f(x)=x2-2ax+a,(1)当a=2时,求函数f(x)在[0,3]上的值域;(2)若a<0,求使函数f(x)=x2-2ax+a的定义域为[―1,1],值域为[一2,2]的a的值.
54.
55.如图,AB是⊙O的直径,P是⊙O所在平面外一点,PA垂直于⊙O所在的平面,且PA=AB=10,设点C为⊙O上异于A,B的任意一点.(1)求证:BC⊥平面PAC;(2)若AC=6,求三棱锥C-PAB的体积.
六、证明题(2题)56.若x∈(0,1),求证:log3X3<log3X<X3.
57.
参考答案
1.C正弦定理的应用,充要条件的判断.大边对大角,大角也就对应大边.
2.B由题意可知,焦点在x轴或y轴上,所以标准方程有两个,而a=3,c/a=1/3,所以c=1,b2=8,因此答案为B。
3.B
4.A
5.D
6.C函数的奇偶性,单调性.根据题意逐-验证,可知y=-x2+1是偶函数且在(0,+∞)上为减函数.
7.C四个选项中,只有C的顶点坐标为(-2,3),焦点为(-4,3)。
8.D确定总体.总体是240名学生的身高情况,个体是每一个学生的身高,样本是40名学生的身髙,样本容量是40.
9.B
10.C对数的性质.由题意可知x满足㏒2x-1>0,即㏒2x>㏒22,根据对数函数的性质得x>2,即函数f(x)的定义域是(2,+∞).
11.A命题的条件.若x=-1则x2=1,若x2=1则x=±1,
12.D
13.C三角函数的性质.f(x)=sin(2x+3π/2)=-cos2x,故其最小正周期为π,故A正确;易知函数f(x)是偶函数,B正确;由函数f(x)=-cos2x的图象可知,函数f(x)的图象关于直线x=π/4不对称,C错误;由函数f(x)的图象易知,函数f(x)在[0,π/2]上是增函数,D正确,
14.D
15.C直线与平面垂直的判定.由已知,α∩β=L,所以L包含于β,又因为n⊥β,所以n⊥L.
16.C为了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,这种方式具有代表性,比较合理的抽样方法是分层抽样。
17.B点到直线的距离公式.因为直线l2的方程可化为3x+4y+1/2=0所以直线l1与直线l2的距离为=3/2
18.A集合补集的计算.C∪M={2,4,6}.
19.D
20.A
21.1/10对数的运算.x=10-1=1/10
22.n2,
23.-7/25
24.-1
25.00。将x=2代入f(x)得,f(2)=0。
26.-189,
27.(1,2)
28.{x|1<=x<=2}
29.0.4
30.
31.1,
32.
,由于是等比数列,所以a4=q2a2,得q=。
33.60m
34.100程序框图的运算.初始值n=3,x=4,程序运行过程如下表所示:v=1,i=2,v=1×4+2=6,i=1,v=6×4+l=25,i=0,v=25×4+0=100,i=-1跳出循环,输出v的值为100.
35.y=±3,点到x轴的距离就是其纵坐标,因此轨迹方程为y=±3。
36.π/3
37.160
38.
39.
双曲线的性质.由题意:c=2,a=1,由c2=a2+b2.得b2=4-1=3,所以b=.
40.
复数模的计算.|3+2i|=
41.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2
42.
43.
44.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4
45.
46.
47.由已知得:由上可解得
48.由题意可设所求抛物线的方程为准线方程为则y=-3代入得:p=12所求抛物线方程为x2=24(y-3)
49.1,2,3三个数字组成无重复数字的所有三位数共有(1)其中偶数有,故所求概率为(2)其中奇数相邻的三位数有个故所求概率为
50.设等比数列的三个正数为,a,aq由题意得解得,a=4,q=1或q=解得这三个数为1,4,16或16,4,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广西建筑节能工程质量检测合同(19篇)
- 规划设计策划管理制度汇编
- 广西房屋建筑和市政工程勘察招标文件范本(2020年试行版)
- 力争上游2025年国际金融理财师考试试题及答案
- 微生物检验技师证书考试冲刺试题演练
- 滚动练1~60参考答案
- 项目可行性分析考题解读试题及答案
- 发掘潜能的2025年证券从业资格试题及答案
- 微生物培养与鉴定过程试题及答案
- 解析注册会计师考试重点试题及答案
- 中国民族史知到课后答案智慧树章节测试答案2025年春云南大学
- 人工智能中的图像与视频数据高效处理方法研究报告
- 中国实景演出行业市场集中度、市场运行态势及未来趋势预测报告(2025版)
- 2025年长春汽车职业技术大学单招职业技能测试题库参考答案
- 心理健康案例报告-青少年网瘾的成因及对策
- 幼儿园获奖公开课:大班语言《我是霸王龙》微课件
- 2025 年意识形态工作计划(方案)
- 2025年河南省烟草专卖局(公司)高校毕业生招聘180人高频重点模拟试卷提升(共500题附带答案详解)
- 2025年江苏省张家港市文化中心管委办招聘3人历年高频重点模拟试卷提升(共500题附带答案详解)
- 2025年河南应用技术职业学院单招职业适应性测试题库含答案
- 私募股权投资风险识别技术-深度研究
评论
0/150
提交评论