




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021年四川省宜宾市普通高校高职单招数学一模测试卷(含答案)学校:________班级:________姓名:________考号:________
一、单选题(20题)1.若sinα与cosα同号,则α属于()A.第一象限角B.第二象限角C.第一、二象限角D.第一、三象限角
2.已知等差数列的前n项和是,若,则等于()A.
B.
C.
D.
3.已知点A(1,-1),B(-1,1),则向量为()A.(1,-1)B.(-1,1)C.(0,0)D.(-2,2)
4.执行如图所示的程序,若输人的实数x=4,则输出结果为()A.4B.3C.2D.1/4
5.一个几何体的三视图如图所示,则该几何体可以是()A.棱柱B.棱台C.圆柱D.圆台
6.如图,在长方体ABCD—A1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥A—BB1D1D的体积为()cm3.A.5B.6C.7D.8
7.已知A(1,1),B(-1,5)且,则C的坐标为()A.(0,3)B.(2,-4)C.(1,-2)D.(0,6)
8.5人站成一排,甲、乙两人必须站两端的排法种数是()A.6B.12C.24D.120
9.在等差数列{an}中,若a2=3,a5=9,则其前6项和S6=()A.12B.24C.36D.48
10.“没有公共点”是“两条直线异面”的()A.充分而不必要条件B.充分必要条件C.必要而不充分条件D.既不充分也不必要条件
11.已知a=(1,2),则2a=()A.(1,2)B.(2,4)C.(2,1)D.(4,2)
12.A.B.C.
13.执行如图所示的程序框图,输出n的值为()A.19B.20C.21D.22
14.椭圆的焦点坐标是()A.(,0)
B.(±7,0)
C.(0,±7)
D.(0,)
15.若圆C1:x2+y2=1与圆C2:x2+y2-6x-8y+m=0外切,则m=()A.21B.19C.9D.-11
16.直线以互相平行的一个充分条件为()A.以都平行于同一个平面
B.与同一平面所成角相等
C.平行于所在平面
D.都垂直于同一平面
17.下列句子不是命题的是A.5+1-3=4
B.正数都大于0
C.x>5
D.
18.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是()A.4πB.3πC.2πD.π
19.已知函数f(x)=x2-x+1,则f(1)的值等于()A.-3B.-1C.1D.2
20.过点C(-3,4)且平行直线2x-y+3=0的直线方程是()A.2x-y+7=0B.2x+y-10=OC.2x-y+10=0D.2x-y-2=0
二、填空题(20题)21.函数y=3sin(2x+1)的最小正周期为
。
22.设等差数列{an}的前n项和为Sn,若S8=32,则a2+2a5十a6=_______.
23.已知一个正四棱柱的底面积为16,高为3,则该正四棱柱外接球的表面积为_____.
24.双曲线x2/4-y2/3=1的离心率为___.
25.
26.在P(a,3)到直线4x-3y+1=0的距离是4,则a=_____.
27.
28.设lgx=a,则lg(1000x)=
。
29.从含有质地均匀且大小相同的2个红球、N个白球的口袋中取出一球,若取到红球的概率为2/5,则取得白球的概率等于______.
30.双曲线x2/4-y2/3=1的虚轴长为______.
31.到x轴的距离等于3的点的轨迹方程是_____.
32.
33.设A=(-2,3),b=(-4,2),则|a-b|=
。
34.设平面向量a=(2,sinα),b=(cosα,1/6),且a//b,则sin2α的值是_____.
35.要使的定义域为一切实数,则k的取值范围_____.
36.
37.
38.不等式(x-4)(x+5)>0的解集是
。
39.函数f(x)=sin2x-cos2x的最小正周期是_____.
40.
三、计算题(5题)41.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.
42.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.
43.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.
44.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
45.解不等式4<|1-3x|<7
四、简答题(5题)46.计算
47.简化
48.以点(0,3)为顶点,以y轴为对称轴的拋物线的准线与双曲线3x2-y2+12=0的一条准线重合,求抛物线的方程。
49.解关于x的不等式
50.化简
五、解答题(5题)51.已知函数f(x)=2sin(x-π/3).(1)写出函数f(x)的周期;(2)将函数f(x)图象上所有的点向左平移π/3个单位,得到函数g(x)的图象,写出函数g(x)的表达式,并判断函数g(x)的奇偶性.
52.设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.(1)求a,b的值;(2)若对于任意的x∈[0,3],都有f(x)<c2成立,求c的取值范围.</c
53.已知数列{an}是的通项公式为an=en(e为自然对数的底数);(1)证明数列{an}为等比数列;(2)若bn=Inan,求数列{1/bnbn+1}的前n项和Tn.
54.设椭圆x2/a2+y2/b2的方程为点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|直线OM的斜率为.(1)求E的离心率e(2)设点C的坐标为(0,-b),N为线段AC的中点,证明:MN丄AB
55.已知函数f(x)=log21+x/1-x.(1)求f(x)的定义域;(2)讨论f(x)的奇偶性;(3)用定义讨论f(x)的单调性.
六、证明题(2题)56.己知正方体ABCD-A1B1C1D1,证明:直线AC1与直线A1D1所成角的余弦值为.
57.己知x∈(1,10),A=lg2x,B=lgx2,证明:A<B.
参考答案
1.D
2.D设t=2n-1,则St=t(t+1+1)=t(t+2),故Sn=n(n+2)。
3.D平面向量的线性运算.AB=(-1-1,1-(-1)=(-2,2).
4.C三角函数的运算∵x=4>1,∴y=㏒24=2
5.D空间几何体的三视图.从俯视图可看出该几何体上下底面为半径不等的圆,正视图与侧视图为等腰梯形,故此几何体为圆台.
6.B四棱锥的体积公式∵长方体底面ABCD是正方形,∴△ABD中BD=3cm,BD边上的高是3/2cm,∴四棱锥A-BB1DD1的体积为去1/3×3×2×3/2=6
7.A
8.B
9.C等差数列前n项和公式.设
10.C
11.B平面向量的线性运算.=2(1,2)=(2,4).
12.A
13.B程序框图的运算.模拟执行如图所示的程序框图知,该程序的功能是计算S=1+2+...+n≥210时n的最小自然数值,由S=n(n+1)/2≥210,解得n≥20,∴输出n的值为20.
14.D
15.C圆与圆相切的性质.圆C1的圆心C1(0,0),半径r1=1,圆C2的方程可化为(x-3)2+(y-4)2=25-m,所以圆心C2(3,4),
16.D根据直线与平面垂直的性质定理,D正确。
17.C
18.C立体几何的侧面积.由几何体的形成过程所得几何体为圆柱,底面半径为1,高为1,其侧面积S=2πrh=2π×1×1=2π.
19.C函数值的计算f(1)=1-1+1=1.
20.C由于直线与2x-y+3=0平行,因此可以设直线方程为2x-y+k=0,又已知过点(-3,4)代入直线方程得2*(-3)-4+k=0,即k=10,所以直线方程为2x-y+10=0。
21.
22.16.等差数列的性质.由S8=32得4(a4+a5)=8,故a2+2a5+a6=2(a4+a5)=16.
23.41π,由题可知,底面边长为4,底面对角线为,外接球的直径即由高和底面对角线组成的矩形的对角线,所以外接球的直径为,外接球的表面积为。
24.e=双曲线的定义.因为
25.-2/3
26.-3或7,
27.4.5
28.3+alg(1000x)=lg(1000)+lgx=3+a。
29.3/5古典概型的概率公式.由题可得,取出红球的概率为2/2+n=2/5,所以n=3,即白球个数为3,取出白球的概率为3/5.
30.2双曲线的定义.b2=3,.所以b=.所以2b=2.
31.y=±3,点到x轴的距离就是其纵坐标,因此轨迹方程为y=±3。
32.
33.
。a-b=(2,1),所以|a-b|=
34.2/3平面向量的线性运算,三角函数恒等变换.因为a//b,所以2x1/6-sinαcosα=0即sinαcosα=1/3.所以sin2α=2sinαcosα=2/3.
35.-1≤k<3
36.16
37.-1
38.{x|x>4或x<-5}方程的根为x=4或x=-5,所以不等式的解集为{x|x>4或x<-5}。
39.πf(x)=2(1/2sin2x-1/2cos2x)=2sin(2x-π/4),因此最小正周期为π。
40.-7/25
41.
42.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4
43.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为
44.
45.
46.
47.
48.由题意可设所求抛物线的方程为准线方程为则y=-3代入得:p=12所求抛物线方程为x2=24(y-3)
49.
50.1+2cos2a-cos2=1+2cos2a-(cos2a-sin2a)=1+cos2a+sin2a=2
51.(1)f(x)=2sin(x-π/4),T=2π/|π|=2π(2)由题意得g(x)=f(x+π/3)=2sin[(x+π/3)-π/3]=2sinx,x∈R.∵g(-x)=2sin(-x)=-2sinx=-g(x),为奇函数.
52.
53.
54.
55.(1)要使函数f(x)=㏒21+x/1-x有意义,则须1+x/1-x>0解得-1<x<1,所以f(x)的定义域为{x|-1<x<1}.(2)因为f(x)的定义域为{x|-1<x<1},且f(-x)=㏒2(1+x/1-x)-1=-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 装箱运输合同样本
- 分包单位的合同范本
- 代理销售中介合同范本
- 农民集资建房合同范本
- 弘扬中华优良传统文化过中国人自己的传统节日单元整体教学设计
- 做好班主任 做一名有智慧的班主任 校园廉洁 14
- 2025家庭居室设计施工一体化合同
- 2025机电安装工程合同乙种本范本
- 2025YY年房屋租赁合同协议
- 语文核心素养的培育知到课后答案智慧树章节测试答案2025年春湖南师范大学
- 第四课 人民民主专政的社会主义国家 课件-高考政治一轮复习统编版必修三政治与法治
- 2025年郑州黄河护理职业学院单招职业适应性考试题库带答案
- (完整版)特殊教育与随班就读
- 旋流风口RA-N3选型计算表格
- 《VB程序结构基础》课件教程
- 个人房屋租赁合同标准版范本
- DBJ50-T-157-2022房屋建筑和市政基础设施工程施工现场从业人员配备标准
- 2024年中考模拟试卷地理(湖北卷)
- 沙塘湾二级渔港防波堤工程施工组织设计
- 大学生心理健康教育知到智慧树章节测试课后答案2024年秋长春医学高等专科学校
- 慢肾风中医辨证施护
评论
0/150
提交评论