版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.某平行四边形的对角线长为x,y,一边长为6,则x与y的值可能是()A.4和7 B.5和7 C.5和8 D.4和172.若关于x的一元二次方程kx2﹣2x﹣1=0有实数根,则k的取值范围是()A.k≥﹣1且k≠0 B.k≥﹣1 C.k≤1 D.k≤1且k≠03.一元二次方程配方后可变形为()A. B. C. D.4.若正比例函数的图像经过第一、三象限,则的值可以是()A.3 B.0或1 C. D.5.已知,则的值为()A.2x5 B.—2 C.52x D.26.如图,在中,为边上一点,将沿折叠至处,与交于点,若,,则的大小为()A. B. C. D.7.反比例函数的图象如图所示,以下结论错误的是()A.B.若点在图象上,则C.在每个象限内,的值随值的增大而减小D.若点,在图象上,则8.醴陵市“师生诗词大赛”成绩结果统计如表,成绩在91--100分的为优秀,则优秀的频率是()分数段61--7071--8081--9091--100人数(人)2864A.0.2 B.0.25 C.0.3 D.0.359.在四边形ABCD中,∠A,∠B,∠C,∠D度数之比为1:2:3:3,则∠B的度数为()A.30°B.40°C.80°D.120°10.已知一组数据:15,16,14,16,17,16,15,则这组数据的中位数是()A.17B.16C.15D.1411.匀速地向如图所示容器内注水,最后将容器注满.在注水过程中,水面高度h随时间t变化情况的大致函数图象(图中OABC为一折线)是()A.(1) B.(2) C.(3) D.无法确定12.下列图形中,是中心对称图形但不是轴对称图形的是()A.等边三角形 B.平行四边形 C.一次函数图象 D.反比例函数图象二、填空题(每题4分,共24分)13.化简________.14.若实数、满足,则以、的值为边长的等腰三角形的周长为。15.如图,在△MBN中,已知:BM=6,BN=7,MN=10,点AC,D分别是MB,NB,MN的中点,则四边形ABCD的周长是_____.16.顺次连接矩形ABCD各边中点,所得四边形形状必定是__________.17.如图,将矩形纸片ABCD分别沿AE、CF折叠,若B、D两点恰好都落在对角线的交点O上,下列说法:①四边形AECF为菱形,②∠AEC=120°,③若AB=2,则四边形AECF的面积为,④AB:BC=1:2,其中正确的说法有_____.(只填写序号)18.若已知a,b为实数,且=b﹣1,则a+b=_____.三、解答题(共78分)19.(8分)已知:如图,已知直线AB的函数解析式为
,AB与y轴交于点
,与x轴交于点
.(1)在答题卡上直接写出A,B两点的坐标;(2)若点P(a,b)为线段AB上的一个动点,作PE⊥y轴于点E,PF⊥x轴于点
F,连接EF.问:①若的面积为
S,求S关于a的函数关系式;②
是否存在点P,使EF的值最小?若存在,求出EF的最小值;若不存在,请说明理由.20.(8分)已知一次函数y=2x和y=-x+4.(1)在平面直角坐标中作出这两函数的函数图像(不需要列表);(2)直线垂直于轴,垂足为点P(3,0).若这两个函数图像与直线分别交于点A,B.求AB的长.21.(8分)列方程或方程组解应用题:为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克,已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)22.(10分)边长为的正方形中,点是上一点,过点作交射线于点,且,则线段的长为?23.(10分)已知:在中,对角线、交于点,过点的直线交于点,交于点.求证:,.24.(10分)我市射击队为了从甲、乙两名运动员中选出一名运动员参加省运动会比赛,组织了选拔测试,两人分别进行了五次射击,成绩(单位:环)如下:甲109899乙1089810你认为应选择哪位运动员参加省运动会比赛.25.(12分)商场某种新商品每件进价是40元,在试销期间发现,当每件商品售价50元时,每天可销售500件,当每件商品售价高于50元时,每涨价1元,日销售量就减少10件.据此规律,请回答:(1)当每件商品售价定为55元时,每天可销售多少件商品?商场获得的日盈利是多少?(2)在上述条件不变,商品销售正常的情况下,每件商品的销售定价为多少元时,商场日盈利可达到8000元?26.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AD平分∠CAB交BC于点D,CD=1,延长AC到E,使AE=AB,连接DE,BE.(1)求BD的长;(2)求证:DA=DE.
参考答案一、选择题(每题4分,共48分)1、C【解析】分析:如图:因为平行四边形的对角线互相平分,所,,在中任意两边之和大于第三边,任意两边之差小于第三边,将各答案代入验证即可求得.详解:A、∵,∴不可能;B、∵,∴不可能;C、∵,∴可能;D、,∴不可能;故选C..点睛:本题考查平行四边形的性质以及三角形的三边关系定理.熟练掌握平行四边形的性质和三角形三条边的关系式解答本题的关键.2、A【解析】
根据一元二次方程的定义和判别式的意义得到k≠1且△=22-4k×(-1)≥1,然后求出两个不等式的公共部分即可.【详解】根据题意得k≠1且△=22-4k×(-1)≥1,解得k≥-1且k≠1.故选A.【点睛】本题考查了一元二次方程ax2+bx+c=1(a≠1)的根的判别式△=b2-4ac:当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.也考查了一元二次方程的定义.3、A【解析】
把常数项移到方程右边,再把方程两边加上16,然后把方程作边写成完全平方形式即可【详解】x−8x=2,x−8x+16=18,(x−4)=18.故选:A【点睛】此题考查一元二次方程-配方法,掌握运算法则是解题关键4、A【解析】
根据正比例函数的性质可得k>0,再根据k的取值范围可以确定答案.【详解】解:∵正比例函数y=kx的图象在第一、三象限,∴k>0,故选:A.【点睛】此题主要考查了正比例函数的性质,关键是掌握正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.5、C【解析】
结合1x2,根据绝对值和二次根式的进行计算,即可得到答案.【详解】因为1x2,所以==52x.故选择C.【点睛】本题考查不等式、绝对值和二次根式,解题的关键是掌握不等式、绝对值和二次根式.6、B【解析】
由平行四边形的性质可得∠B=∠D=52°,由三角形的内角和定理可求∠DEA的度数,由折叠的性质可求∠AED'=∠DEA=108°.【详解】∵四边形ABCD是平行四边形,∴∠B=∠D=52°,且∠DAE=20°,∴∠DEA=180°﹣∠D-∠DAE=108°.∵将△ADE沿AE折叠至△AD'E处,∴∠AED'=∠DEA=108°.故选B.【点睛】本题考查了翻折变换,平行四边形的性质,三角形内角和定理,熟练运用这些性质是本题的关键.7、D【解析】
根据反比例函数的图象的位置确定其比例系数的符号,利用反比例函数的性质进行判断即可.【详解】解:∵反比例函数的图象位于一、三象限,∴k>0故A正确;
当点M
(1,3)在图象上时,代入可得k=3,故B正确;
当反比例函数的图象位于一、三象限时,在每一象限内,y随x的增大而减小,
故C正确;
将A(-1,a),B(2,b)代入中得到,得到a=-k,
∵k>0
∴a<b,
故D错误,
故选:D.【点睛】本题考查了反比例函数的性质,牢记反比例函数的比例系数的符号与其图象的关系是解决本题的关键8、A【解析】
根据优秀人数为人,而数据总数为个,由频率公式可得答案.【详解】解:由题意得:优秀的频率是故选A.【点睛】本题考查的是频数与频率,掌握“频率等于频数除以数据总数”是解题的关键.9、C【解析】【分析】根据四边形的内角和为360度结合各角的比例即可求得答案.【详解】∵四边形内角和360°,∴设∠A=x°,则有x+2x+3x+3x=360,解得x=40,则∠B=80°,故选B.【点睛】本题考查了多边形的内角和,根据四边形内角和等于360°列出方程是解题关键.10、B【解析】
根据中位数的定义:将一组数据从小到大(或从大到小)排列,最中间的数据(或最中间两个数据)的平均数,就是这组数据的中位数,即可得出答案.【详解】把这组数据按照从小到大的顺序排列:14,15,15,16,16,16,17,最中间的数据是16,所以这组数据的中位数是16.故选B.【点睛】本题考查了中位数的定义.熟练应用中位数的定义来找出一组数据的中位数是解题的关键.11、A【解析】
根据题意和图形可以判断哪个函数图象符合实际,从而可以解答本题.【详解】解:由图形可得,从开始到下面的圆柱注满这个过程中,h随时间t的变化比较快,从最下面的圆柱注满到中间圆柱注满这个过程中,h随时间t的变化比较缓慢,从中间圆柱注满到最上面的圆柱注满这个过程中,h随时间t的变化最快,故(1)中函数图象符合题意,故选:A.【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.12、B【解析】
根据中心对称和轴对称图形的定义判定即可.【详解】解:A.等边三角形是轴对称图形,不是中心对称图形;B.平行四边形既不是轴对称图形但是中心对称图形;C.一次函数图象是轴对称图形也是中心对称图形;D.反比例函数图象是轴对称图形也是中心对称图形;故答案为B.【点睛】本题考査了中心对称图形与轴对称图形的概念,轴对称图形的关键是明确轴对称图形和中心对称图形的区别和联系.二、填空题(每题4分,共24分)13、【解析】
根据二次根式有意义条件求解即可.【详解】根据题意知:2-a≥0,a-2≥0,解得,a=2,∴3×2+0+0=6.故答案为:6.【点睛】此题主要考查了二次根式有意义的条件的应用,注意二次根式有意义的条件是被开方数是非负数.14、20。【解析】先根据非负数的性质列式求出x、y的值,再分4是腰长与底边两种情况讨论求解:根据题意得,x﹣4=0,y﹣8=0,解得x=4,y=8。①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形,②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20。所以,三角形的周长为20。15、13【解析】
根据中位线性质可以推出CD∥AB,AD∥BC,可得四边形ABCD为平行四边形,由中点可得四边形ABCD的周长【详解】∵点A,C,D分别是MB,NB,MN的中点,∴CD∥AB,AD∥BC,∴四边形ABCD为平行四边形,∴AB=CD,AD=BC.∵BM=6,BN=7,点A,C分别是MB,NB的中点,∴AB=3,BC=3.5,∴四边形ABCD的周长=(AB+BC)×2=(3+3.5)×2=13.故答案为13【点睛】本题考查了中位线的性质,以及平行四边形的判定及性质,掌握中位线的性质及平行四边形的性质是解题的关键.16、菱形【解析】【分析】连接BD,AC,根据矩形性质和三角形中位线性质,可证四条边相等,可得菱形.【详解】如图连接BD,AC由矩形性质可得AC=BD,因为,E,F,G,H是各边的中点,所以,根据三角形中位线性质可得:HG=EF=BD,EH=FG=AC所以,EG=EF=EF=FG,所以,所得四边形EFGH是菱形.故答案为:菱形【点睛】本题考核知识点:矩形性质,菱形判定.解题关键点:由三角形中位线性质证边相等.17、①②③【解析】
根据折叠性质可得OC=CD=AB=OA,∠COF=∠EOA=∠B=∠D=90°,∠OCF=∠DCF,∠BAE=∠OAE,即可得出∠ACB=30°,进而可得∠OCF=∠DCF=∠BAE=∠OAE=30°,可证明AE//CF,AE=CE,根据矩形性质可得CE//AF,即可得四边形AECF是平行四边形,进而可得四边形AECF为菱形,由∠BAE=30°,可得∠AEB=60°,即可得∠AEC=120°,根据含30°角的直角三角形的性质可求出BE的长,即可得OE的长,根据菱形的面积公式即可求出四边形AECF的面积,根据含30°角的直角三角形的性质即可求出AB:BC的值,综上即可得答案.【详解】∵矩形ABCD分别沿AE、CF折叠,B、D两点恰好都落在对角线的交点O上,∴OC=CD=AB=OA,∠COF=∠EOA=∠B=∠D=90°,∠OCF=∠DCF,∠BAE=∠OAE,∴∠ACB=∠CAD=30°,∠BAC=∠ACD=60°,∵∠OCF=∠DCF,∠BAE=∠OAE,∴∠OCF=∠DCF=∠BAE=∠OAE=30°,∴AE//CF,AE=CE,∴四边形AECF是平行四边形,∵AE=CE,∴四边形AECF是菱形,故①正确,∵∠BAE=30°,∠B=90°,∴∠AEB=60°,∴∠AEC=120°,故②正确,设BE=x,∵∠BAE=30°,∴AE=2x,∴x2+22=(2x)2,解得:x=,∴OE=BE=,∴S菱形AECF=EFAC=××4=,故③正确,∵∠ACB=30°,∴AC=2AB,∴BC==AB,∴AB:BC=1:,故④错误,综上所述:正确的结论有①②③,故答案为:①②③【点睛】本题考查矩形的性质、菱形的判定与性质及含30°角的直角三角形的性质,熟练掌握相关性质及判定方法是解题关键.18、6【解析】
根据二次根式被开方数为非负数可得关于a的不等式组,继而可求得a、b的值,代入a+b进行计算即可得解.【详解】由题意得:,解得:a=5,所以:b=1,所以a+b=6,故答案为:6.【点睛】本题考查了二次根式有意义的条件,熟知二次根式的被开方数为非负数是解题的关键.三、解答题(共78分)19、(1);(2)①(-5≤a≤0);②存在,【解析】
(1)由直线AB解析式,令x=0与y=0分别求出y与x的值,即可确定出A与B的坐标;(2)①把P坐标代入直线AB解析式,得到a与b的关系式,三角形POB面积等于OB为底边,P的纵坐标为高,表示出S与a的解析式即可;②存在,理由为:利用三个角为直角的四边形为矩形,得到四边形PFOE为矩形,利用矩形的对角线相等得到EF=PO,由O为定点,P为动点,得到OP垂直于AB时,OP取得最小值,利用面积法求出OP的长,即为EF的最小值.【详解】解:(1)对于直线AB解析式y=2x+10,令x=0,得到y=10;令y=0,得到x=-5,则A(0,10),B(-5,0);(2)连接OP,如图所示,①∵P(a,b)在线段AB上,∴b=2a+10,由0≤2a+10≤10,得到-5≤a≤0,由(1)得:OB=5,∴则(-5≤a≤0);②存在,理由为:∵∠PFO=∠FOE=∠OEP=90°,∴四边形PFOE为矩形,∴EF=PO,∵O为定点,P在线段AB上运动,∴当OP⊥AB时,OP取得最小值,∵,∴∴EF=OP=综上,存在点P使得EF的值最小,最小值为.【点睛】本题属于一次函数综合题,考查的是:一次函数与坐标轴的交点,坐标与图形性质,矩形的判定与性质,勾股定理,以及三角形面积求法,熟练掌握性质及定理是解本题的关键.20、(1)见解析(2)5【解析】
(1)根据网格即可作出函数图像;(2)根据图像即可得到AB的长.【详解】(1)如图所示;(2)由图像可得AB=5.【点睛】此题主要考查一次函数的图像,解题的关键是熟知一次函数的画法.21、3.2克.【解析】
设A4薄型纸每页的质量为x克,则A4厚型纸每页的质量为(x+0.8)克,然后根据“双面打印,用纸将减少一半”列方程,然后解方程即可.【详解】解:设A4薄型纸每页的质量为x克,则A4厚型纸每页的质量为(x+0.8)克,根据题意,得:,解得:x=3.2,经检验:x=3.2是原分式方程的解,且符合题意.答:A4薄型纸每页的质量为3.2克.【点睛】本题考查分式方程的应用,掌握题目中等量关系是关键,注意分式方程结果要检验.22、或【解析】
分两种情况讨论,①过点作,垂直为,交于,先求出N是CF的中点,然后得出,根据矩形和等腰三角形的性质得出即可求出答案;②过点作,垂直为,交于,根据正方形和全等三角形的性质得出,然后再求出,,,,最终即可求出.【详解】解:①过点作,垂直为,交于,,是的中点.,.又四边形是矩形,为等腰直角三角形,,.②过点作,垂直为,交于.正方形关于对称,,,又,,,..又,,,,.综上所述,的长为或【点睛】本题主要考查的是矩形的性质、全等三角形的性质和判定、等腰三角形的性质和判定、等腰直角三角形的性质,掌握本题的辅助线的法则是解题的关键.23、证明见解析.【解析】
首先根据平行四边形的性质可得AB∥CD,OA=OC.根据平行线的性质可得∠EAO=∠FCO,进而可根据ASA定理证明△AEO≌△CFO,再根据全等三角形的性质可得OE=OF,AE=CF.【详解】证明:∵四边形ABCD为平行四边形,且对角线AC和BD交于点O,∴,,∴∠EAO=∠FCO,∵∠AOE=∠COF,∴△AOE△COF(ASA),∴OE=OF,AE=CF.【点睛】本题考查了平行四边形的性质和全等三角形的判定,掌握全等三角形判定的方法是本题解题的关键.24、应选择甲运动员参加省运动会比赛.【解析】试题分析:先分别计算出甲和乙成绩的平均数,再利用方差公式求出甲和乙成绩的方差,最后根据方差的大小进行判断即可.解:甲的平均成绩是:(10+9+8+9+9)=9.乙的平均成绩是:(10+8+9+8+10)=9.甲成绩的方差是:=[(10-9)2+(9-9)2+(8-9)2+(9-9)2+(9-9)2]÷5=0.4.乙成绩的方差是:=[(10-9)2+(8-9)2+(9-9)2+(8-9)2+(10-9)2]÷5=0.8.∵,∴甲的成绩较稳定,∴应选择甲运动员参加省运动会比赛.点睛:本题考查了方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数的程度越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 环保局代表演讲稿5篇
- 给生病学生捐款的倡议书
- 图书漂流活动方案15篇
- 德智体美劳自我总结(5篇)
- 21.1 二次根式 同步练习
- 浙江省浙里特色联盟期中联考2024-2025学年高一上学期11月期中英语试题(无答案)
- 贵州省黔西南布依族苗族自治州兴义市顶效开发区顶兴学校2024-2025学年高三上学期期中考试生物试题(含答案)
- 浙江地区高考语文五年高考真题汇编语言文字应用
- 房地产租赁中介合同
- 2024年工地门窗安装合同
- 2024广西继续教育公需科目(高质量共建“一带一路”)
- 中央2024年中国农业科学院农田灌溉研究所招聘应届生等27人笔试历年典型考题及考点附答案解析
- 《西游记》情节梳理及专项训练(21-40回)解析版
- DL-T5161.8-2018电气装置安装工程质量检验及评定规程第8部分:盘、柜及二次回路接线施工质量检验
- 骨科优势病种中医诊疗方案
- 肱骨远端骨折手术治疗
- MOOC 数学文化十讲-南开大学 中国大学慕课答案
- 220kV级变压器安装使用说明指导书
- 2023年1月自考00324人事管理学试题及答案含解析
- 家庭室内装修预算方法1
- 继承优良传统弘扬中国精神
评论
0/150
提交评论