版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学(理)(北京卷)第页(共5页)2012年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。考试时长120分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本试卷和答题卡一并交回。第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.(1)已知集合,,则(A)(B)(C)(D)(2)设不等式组表示的平面区域为.在区域内随机取一个点,则此点到坐标原点的距离大于的概率是(A)(B)(C)(D)(3)设.“”是“复数是纯虚数”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(4)执行如图所示的程序框图,输出的值为(A)(B)(C)(D)(5)如图,,于点,以为直径的圆与交于点.则(A)(B)(C)(D)(6)从中选一个数字,从中选两个数字,组成无重复数字的三位数,其中奇数的个数为(A)(B)(C)(D)(7)某三棱锥的三视图如图所示,该三棱锥的表面积是(A)(B)(C)(D)(8)某棵果树前年的总产量与之间的关系如图所示.从目前记录的结果看,前年的年平均产量最高,的值为(A)(B)(C)(D)第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分.(9)直线为参数与曲线为参数的交点个数为.(10)已知为等差数列,为其前项和.若,,则.(11)在中,若,,,则.(12)在直角坐标系中,直线过抛物线的焦点,且与该抛物线相交于、两点,其中,点在轴上方.若直线的倾斜角为,则的面积为.(13)已知正方形的边长为,点是边上的动点,则的值为.(14)已知,.若同时满足条件:①,或;②,.则的取值范围是.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.(15)(本小题共13分)已知函数.(Ⅰ)求的定义域及最小正周期;(Ⅱ)求的单调递增区间.(16)(本小题共14分)如图,在中,,,,分别为上的点,且//,,将沿折起到的位置,使,如图.(Ⅰ)求证:平面;(Ⅱ)若是的中点,求与平面所成角的大小;(Ⅲ)线段上是否存在点,使平面与平面垂直?说明理由.(17)(本小题共13分)近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计吨生活垃圾,数据统计如下(单位:吨):“厨余垃圾”箱“可回收物”箱“其他垃圾”箱厨余垃圾可回收物其他垃圾(Ⅰ)试估计厨余垃圾投放正确的概率;(Ⅱ)试估计生活垃圾投放错误的概率;(Ⅲ)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为,其中,600.当数据的方差最大时,写出的值(结论不要求证明),并求此时的值.(注:…,其中为数据的平均数)(18)(本小题共13分)已知函数,.(Ⅰ)若曲线与曲线在它们的交点处具有公共切线,求的值;(Ⅱ)当时,求函数的单调区间,并求其在区间上的最大值.(19)(本小题共14分)已知曲线:.(Ⅰ)若曲线是焦点在轴点上的椭圆,求的取值范围;(Ⅱ)设,曲线与轴的交点为(点位于点的上方),直线与曲线交于不同的两点,直线与直线交于点.求证:三点共线.(20)(本小题共13分)设是由个实数组成的行列的数表,满足:每个数的绝对值不大于,且所有数的和为零.记为所有这样的数表构成的集合.对于,记为的第行各数之和≤≤,为的第列各数之和≤≤.记为,中的最小值.(Ⅰ)对如下数表,求的值;(Ⅱ)设数表形如求的最大值;(Ⅲ)给定正整数,对于所有的,求的最大值.2012高考北京数学真题答案及简析一、选择题题号12345678答案DDBCABBC二、填空题题号91011121314答案21;41;1三、解答题15.解:(1)原函数的定义域为,最小正周期为.(2)原函数的单调递增区间为,16.解:(1),平面,又平面,又,平面(2)如图建系,则,,,∴,设平面法向量为则∴∴∴又∵∴∴∴与平面所成角的大小(3)设线段上存在点,设点坐标为,则则,设平面法向量为则∴∴假设平面与平面垂直则,∴,,∵∴不存在线段上存在点,使平面与平面垂直17.()由题意可知:()由题意可知:()由题意可知:,因此有当,,时,有.18.解:()由为公共切点可得:,则,,,则,,①又,,,即,代入①式可得:.(2),设则,令,解得:,;,,原函数在单调递增,在单调递减,在上单调递增①若,即时,最大值为;②若,即时,最大值为③若时,即时,最大值为.综上所述:当时,最大值为;当时,最大值为.19.(1)原曲线方程可化简得:由题意可得:,解得:(2)由已知直线代入椭圆方程化简得:,,解得:
由韦达定理得:①,,②设,,方程为:,则,,,欲证三点共线,只需证,共线即成立,化简得:将①②代入易知等式成立,则三点共线得证。20.解:(1)由题意可知,,,,∴(2)先用反证法证明:若则,∴同理可知,∴由题目所有数和为即∴与题目条件矛盾∴.易知当时,存在∴的最大值为1(3)的最大值为.首先构造满足的:,.经计算知,中每个元素的绝对值都小于1,所有元素之和为0,且,,.下面证明是最大值.若不然,则存在一个数表,使得.由的定义知的每一列两个数之和的绝对值都不小于,而两个绝对值不超过1的数的和,其绝对值不超过2,故的每一列两个数之和的绝对值都在区间中.由于,故的每一列两个数符号均与列和的符号相同,且绝对值均不小于.设中有列的列和为正,有列的列和为负,由对称性不妨设,则.另外,由对称性不妨设的第一行
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《名家名篇开头》课件
- 快递物流中心建设可行性分析报告
- 长方体的表面积课件
- 《园林工程技术》课件
- 近三年类似工程经验情况
- 《红色旅游概况》课件
- 医疗建设终止合同模板
- 科技启蒙:幼儿园科技馆建设合同
- 科技创新园区
- 2020年评标专家考试题及答案山西
- 幼儿园中班班务会会议记录表
- 项目立项单(模板)
- 三角函数的概念说课稿-高一上学期数学人教A版
- 基础会计综合实训
- 小学生相声剧本(10篇)
- 2023-2024学年山东省胶州市初中语文九年级上册期末自测测试题
- 人力资源专员招聘笔试题
- 全过程工程造价跟踪审计服务方案
- 四川农业大学《中国近现代史纲要(本科)》22年11月课程考核答案
- 《拼多多营销策略问题研究(论文)》
- GB/T 7531-2008有机化工产品灼烧残渣的测定
评论
0/150
提交评论