2023年江苏泰州周庄初级中学数学八年级第二学期期末学业水平测试试题含解析_第1页
2023年江苏泰州周庄初级中学数学八年级第二学期期末学业水平测试试题含解析_第2页
2023年江苏泰州周庄初级中学数学八年级第二学期期末学业水平测试试题含解析_第3页
2023年江苏泰州周庄初级中学数学八年级第二学期期末学业水平测试试题含解析_第4页
2023年江苏泰州周庄初级中学数学八年级第二学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长交AC于点E.若AB=8,BC=14,则线段EF的长为()A.2 B.3 C.5 D.62.通过估算,估计的大小应在()A.7~8之间 B.8.0~8.5之间C.8.5~9.0之间 D.9~10之间3.用反证法证明:“直角三角形至少有一个锐角不小于45°”时,应先假设()A.直角三角形的每个锐角都小于45°B.直角三角形有一个锐角大于45°C.直角三角形的每个锐角都大于45°D.直角三角形有一个锐角小于45°4.一个多边形的每个外角都等于45°,则这个多边形的边数是()A.11 B.10 C.9 D.85.甲袋装有4个红球和1个黑球,乙袋装有6个红球、4个黑球和5个白球.这些球除了颜色外没有其他区别,分别搅匀两袋中的球,从袋中分别任意摸出一个球,正确说法是()A.从甲袋摸到黑球的概率较大B.从乙袋摸到黑球的概率较大C.从甲、乙两袋摸到黑球的概率相等D.无法比较从甲、乙两袋摸到黑球的概率6.如果关于x的一次函数y=(a+1)x+(a﹣4)的图象不经过第二象限,且关于x的分式方程有整数解,那么整数a值不可能是()A.0 B.1 C.3 D.47.下列式子中为最简二次根式的是()A. B. C. D.8.如图,正比例函数和一次函数的图像相交于点.当时,则()A. B. C. D.9.下列函数中是一次函数的为()A.y=8x2 B.y=x+1 C.y= D.y=10.小华同学某体育项目7次测试成绩如下(单位:分):9,7,1,8,1,9,1.这组数据的中位数和众数分别为()A.8,1 B.1,9 C.8,9 D.9,111.下列图形既是轴对称图形,又是中心对称图形的是()A. B. C. D.12.在平面直角坐标系中,点(﹣2,﹣a2﹣3)一定在()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题(每题4分,共24分)13.2018﹣2019赛季中国男子篮球职业联赛(CBA),继续采用双循环制(每两队之间都进行两场比赛),总比赛场数为380场.求有多少支队伍参加比赛?设参赛队伍有x支,则可列方程为_____.14.已知:一组邻边分别为和的平行四边形,和的平分线分别交所在直线于点,,则线段的长为________.15.如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别交AB、BC于点D、E,连结DE.若四边形ODBE的面积为9,则△ODE的面积是________.16.如图,在平行四边形ABCD中,DB=DC,∠C=70°,AE⊥BD于E,则∠DAE=_____度.17.在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a).如图,若曲线与此正方形的边有交点,则a的取值范围是________.18.如图,双曲线y=(x>0)经过四边形OABC的顶点A、C,∠ABC=90°,OC平分OA与x轴正半轴的夹角,AB∥x轴.将△ABC沿AC翻折后得△AB′C,B′点落在OA上,则四边形OABC的面积是.三、解答题(共78分)19.(8分)分解因式:3a2b﹣12ab+12b.20.(8分)如图,△ABC与△A′B′C′是位似图形,且位似比是1:1.(1)在图中画出位似中心点O;(1)若AB=1cm,则A′B′的长为多少?21.(8分)已知直线l1:y=x+n﹣2与直线l2:y=mx+n相交于点P(1,2).(1)求m,n的值;(2)请结合图象直接写出不等式mx+n>x+n﹣2的解集.(3)若直线l1与y轴交于点A,直线l2与x轴交于点B,求四边形PAOB的面积.22.(10分)解方程(2x-1)2=3-6x.23.(10分)春季流感爆发,有一人患了流感,经过两轮传染后共有人患了流感,(1)每轮传染中平均一个人传染了几个人?(2)经过三轮传染后共有多少人患了流感?24.(10分)某中学开学初到商场购买A.B两种品牌的足球,购买A种品牌的足球50个,B种品牌的足球25个,共花费4500元.已知购买一个B种品牌的足球比购买一个A种品牌的足球多花30元(1)求购买一个A种品牌、一个B种品牌的足球各需多少元?(2)学校为了响应“足球进校园”的号召,决定再次购进A.B两种品牌足球共50个,正好赶上商场对商品价格进行调整,A品牌足球售价比第一次购买时提高4元,B品牌足球按第一次购买时售价的9折出售,如果学校此次购买A.B两种品牌足球的总费用不超过第一次花费的70%,且保证这次购买的B种品牌足球不少于23个,则这次学校有哪几种购买方案?25.(12分)已知如图,反比例函数的图象与一次函数的图象交于点,点.(1)求,的值;(2)求的面积;(3)直接写出时的取值范围.26.我们新定义一种三角形:两边平方和等于第三边平方的4倍的三角形叫做常态三角形.例如:某三角形三边长分别是5,6和8,因为,所以这个三角形是常态三角形.(1)若三边长分别是2,和4,则此三角形常态三角形(填“是”或“不是”;(2)如图,中,,,点为的中点,连接,若是常态三角形,求的面积.

参考答案一、选择题(每题4分,共48分)1、B【解析】

根据直角三角形斜边上中线是斜边的一半可得DF=AB=AD=BD=4且∠ABF=∠BFD,结合角平分线可得∠CBF=∠DFB,即DE∥BC,进而可得DE=7,由EF=DE-DF可得答案.【详解】∵AF⊥BF,∴∠AFB=90°,∵AB=8,D为AB中点,∴DF=AB=AD=BD=4,∴∠ABF=∠BFD,又∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠CBF=∠DFB,∴DE∥BC,∴AE=EC,∴DE=BC=7,∴EF=DE−DF=3,【点睛】此题考查三角形中位线定理,直角三角形斜边上的中线,解题关键在于利用直角三角形斜边上中线的定理2、C【解析】

先找到所求的无理数在哪两个和它接近的有理数之间,然后判断出所求的无理数的范围.【详解】解:∵64<1<81,∴89,排除A和D,又∵8.52=72.25<1.故选C.3、A【解析】分析:找出原命题的方面即可得出假设的条件.详解:有一个锐角不小于45°的反面就是:每个锐角都小于45°,故选A.点睛:本题主要考查的是反证法,属于基础题型.找到原命题的反面是解决这个问题的关键.4、D【解析】

根据多边形的外角和等于,用360除以一个多边形的每个外角的度数,求出这个多边形的边数是多少即可.【详解】解:,这个多边形的边数是1.故选:D.【点睛】此题主要考查了多边形的内角与外角,要熟练掌握,解答此题的关键是要明确:多边形的外角和等于.5、B【解析】试题分析:根据概率的计算法则可得:甲袋P(摸到黑球)=;乙袋P(摸到黑球)=.根据可得:从乙袋摸到黑球的概率较大.考点:概率的计算6、B【解析】

依据关于x的一次函数y=(a+2)x+(a-2)的图象不经过第二象限的数,求得a的取值范围,依据关于x的分式方程有整数解,即可得到整数a的取值.【详解】解:∵关于x的一次函数y=(a+2)x+(a-2)的图象不经过第二象限,

∴a+2>0,a-2≤0,

解得-2<a≤2.

∵+2=,

∴x=,

∵关于x的分式方程+2=有整数解,

∴整数a=0,2,3,2,

∵a=2时,x=2是增根,

∴a=0,3,2

综上,可得,满足题意的a的值有3个:0,3,2,

∴整数a值不可能是2.

故选B.【点睛】本题考查了一次函数的图象与系数的关系以及分式方程的解.注意根据题意求得使得关于x的分式方程有整数解,且关于x的一次函数y=(a+2)x+(a-2)的图象不经过第二象限的a的值是关键.7、C【解析】

根据最简二次根式的概念逐一进行判断即可.【详解】A.,故A选项不符合题意;B.,故B选项不符合题意;C.是最简二次根式,符合题意;D.,故不符合题意,故选C.【点睛】本题考查了最简二次根式的识别,熟练掌握最简二次根式的概念以及二次根式的化简是解题的关键.8、C【解析】

由图象可以知道,当x=3时,两个函数的函数值是相等的,再根据函数的增减性即可得到结论.【详解】解:由图象知,当x>3时,y1的图象在y2上方,y2<y1.故答案为:D.【点睛】本题考查了两条直线相交与平行,正确的识别图象是解题的关键.9、B【解析】

根据一次函数的定义逐一分析即可.【详解】解:A、自变量次数不为1,故不为一次函数;B、是一次函数;C、为反比例函数;D、分母中含有未知数不是一次函数.所以B选项是正确的.【点睛】本土主要考查一次函数的定义:一次函数的定义条件是函数形式为y=kx+b(k、b为常数,k≠0,自变量次数为1).10、D【解析】试题分析:把这组数据从小到大排列:7,8,9,9,1,1,1,最中间的数是9,则中位数是9;1出现了3次,出现的次数最多,则众数是1;故选D.考点:众数;中位数.11、D【解析】

直接利用轴对称图形和中心对称图形的概念求解.【详解】解:A、是轴对称图形,但不是中心对称图形,故此选项错误;

B、是轴对称图形,不是中心对称图形,故此选项错误;

C、是轴对称图形,不是中心对称图形,故此选项错误;

D、既是中心对称图形也是轴对称图形,故此选项正确.

故选:D.【点睛】此题主要考查了中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合.12、C【解析】

根据直角坐标系的坐标特点即可判断.【详解】解:∵a2+3≥3>0,∴﹣a2﹣3<0,∴点(﹣2,﹣a2﹣3)一定在第三象限.故选C.【点睛】此题主要考查直角坐标系点的特点,解题的关键是熟知各象限坐标特点.二、填空题(每题4分,共24分)13、x(x﹣1)=1【解析】

设参赛队伍有x支,根据参加篮球职业联赛的每两队之间都进行两场比赛,共要比赛1场,可列出方程.【详解】设参赛队伍有x支,根据题意得:x(x﹣1)=1故答案为x(x﹣1)=1.【点睛】本题考查了由实际问题抽象出一元二次方程,关键是根据总比赛场数做为等量关系列方程求解.14、或【解析】

利用当AB=10cm,AD=6cm,由于平行四边形的两组对边互相平行,又AE平分∠BAD,由此可以推出所以∠BAE=∠DAE,则DE=AD=6cm;同理可得:CF=CB=6cm,而EF=CF+DE-DC,由此可以求出EF长;同理可得:当AD=10cm,AB=6cm时,可以求出EF长【详解】解:如图1,当AB=10cm,AD=6cm∵AE平分∠BAD∴∠BAE=∠DAE,又∵AD∥CB∴∠EAB=∠DEA,∴∠DAE=∠AED,则AD=DE=6cm同理可得:CF=CB=6cm∵EF=DE+CF-DC=6+6-10=2(cm)如图2,当AD=10cm,AB=6cm,∵AE平分∠BAD,∴∠BAE=∠DAE又∵AD∥CB∴∠EAB=∠DEA,∴∠DAE=∠AED则AD=DE=10cm同理可得,CF=CB=10cmEF=DE+CF-DC=10+10-6=14(cm)故答案为:2或14.图1图2【点睛】本题主要考查了角平分线的定义、平行四边形的性质、平行线的性质等知识,关键是平行四边形的不同可能性进行分类讨论.15、【解析】

设B的坐标为(2a,2b),E点坐标为(x,2b),D点坐标为(2a,y),因为D、E、M在反比例函数图象上,则ab=k,2bx=k,2ay=k,根据四边形ODBE的面积列式,求得k值,再由2bx×2ay=4abxy=k2=9,求得xy的值,然后根据所求的结果求出△BED的面积,则△ODE的面积就是四边形ODBE的面积和△BED的面积之差.【详解】解:设B的坐标为(2a,2b),则M点坐标为(a,b),

∵M在AC上,∴ab=k(k>0),设E点坐标为(x,2b),D点坐标为(2a,y),则2bx=k,2ay=k,∴S四边形ODBE=2a×2b-×(2bx+2ay)=9,即4k-(k+k)=9,解得k=3,∵2bx×2ay=4abxy=k2=9,∴4abxy=9,解得:xy=,则S△BED=BE×BD=,∴

S△ODE=

S四边形ODBE-S△BED=9-【点睛】本题主要考查反比函数与几何综合,解题关键在于利用面积建立等式求出k.16、【解析】

由DB=DC,∠C=70°可以得到∠DBC=∠C=70°,又由AD∥BC推出∠ADB=∠DBC=∠C=70°,而∠AED=90°,根据直角三角形两锐角互余即可求得答案.由此可以求出∠DAE.【详解】∵DB=DC,∠C=70°,∴∠DBC=∠C=70°,在平行四边形ABCD中,∵AD∥BC,AE⊥BD,∴∠ADB=∠DBC=∠C=70°,∠AED=90°,∴∠DAE=-70°=20°.故填空为:20°.【点睛】本题考查了平行四边形的性质、等腰三角形的性质、直角三角形两锐角互余的性质,熟练掌握相关性质与定理是解题的关键.17、-1≤a≤【解析】

根据题意得出C点的坐标(a-1,a-1),然后分别把A、C的坐标代入求得a的值,即可求得a的取值范围.【详解】解:反比例函数经过点A和点C.当反比例函数经过点A时,即=3,解得:a=±(负根舍去);当反比例函数经过点C时,即=3,解得:a=1±(负根舍去),则-1≤a≤.故答案为:-1≤a≤.【点睛】本题考查的是反比例函数图象上点的坐标特点,关键是掌握反比例函数y=(k为常数,k≠0)的图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.18、1.【解析】

延长BC,交x轴于点D,设点C(x,y),AB=a,由角平分线的性质得,CD=CB′,则△OCD≌△OCB′,再由翻折的性质得,BC=B′C,根据反比例函数的性质,可得出S△OCD=xy,则S△OCB′=xy,由AB∥x轴,得点A(x-a,1y),由题意得1y(x-a)=1,从而得出三角形ABC的面积等于ay,即可得出答案.【详解】延长BC,交x轴于点D,设点C(x,y),AB=a,∵OC平分OA与x轴正半轴的夹角,∴CD=CB′,△OCD≌△OCB′,再由翻折的性质得,BC=B′C,∵双曲线

(x>0)经过四边形OABC的顶点A.

C,∴S△OCD=xy=1,∴S△OCB′=xy=1,由翻折变换的性质和角平分线上的点到角的两边的距离相等可得BC=B′C=CD,∴点A.

B的纵坐标都是1y,∵AB∥x轴,∴点A(x−a,1y),∴1y(x−a)=1,∴xy−ay=1,∵xy=1∴ay=1,∴S△ABC=ay=,∴SOABC=S△OCB′+S△AB′C+S△ABC=1++=1.故答案为:1.三、解答题(共78分)19、3b(a﹣1)1.【解析】

首先提取公因式3b,再利用完全平方公式分解因式得出答案.【详解】原式=3b(a1﹣4a+4)=3b(a﹣1)1.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.20、(1)见解析;(1)的长为【解析】

(1)根据位似图形的性质直接得出位似中心即可;

(1)利用位似比得出对应边的比进而得出答案.【详解】解:(1)如图所示:连接BB′、CC′,它们的交点即为位似中心O;

(1)∵△ABC与△A′B′C′是位似图形,且位似比是1:1,

AB=1cm,

∴A′B′的长为4

cm.【点睛】此题主要考查了位似图形的性质,利用位似比等于对应边的比得出是解题关键.21、(1)m=﹣1,n=3;(2)x<1;(3)四边形PAOB的面积为:3.1.【解析】

(1)直接把已知点代入函数关系式进而得出m,n的值;(2)直接利用函数图形得出不等式mx+n>x+n﹣2的解集;(3)分别得出AO,BO的长,进而得出四边形PAOB的面积.【详解】(1)把P(1,2)代入y=x+n﹣2得:1+n﹣2=2,解得:n=3;把P(1,2)代入y=mx+3得:m+3=2,解得m=﹣1;(2)不等式mx+n>x+n﹣2的解集为:x<1;(3)当x=0时,y=x+1=1,故OA=1,当y=0时,y=﹣x+3,解得:x=3,则OB=3,四边形PAOB的面积为:(1+2)×1+×2×(3﹣1)=3.1.【点睛】此题主要考查了一次函数与一元一次不等式以及四边形的面积,正确利用函数图象分析是解题关键.22、【解析】

先移项,然后用因式分解法解一元二次方程即可.【详解】解:(2x-1)2=-3(2x-1)(2x-1)2+3(2x-1)=0(2x-1)[(2x-1)+3]=0(2x-1)((2x+2)=0x1=,x2=-1【点睛】此题主要考查解一元二次方程,熟练掌握解一元二次方程的方法是解题关键.23、(1)每轮传染中平均一个人传染8个人;(2)经过三轮传染后共有729人会患流感.【解析】

(1)设每轮传染中平均一个人传染x个人,根据经过两轮传染后共有81人患了流感,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)根据经过三轮传染后患流感的人数=经过两轮传染后患流感的人数+经过两轮传染后患流感的人数×8,即可求出结论.【详解】解:(1)设每轮传染中平均一个人传染x个人,

根据题意得:1+x+x(x+1)=81,

整理,得:x2+2x-80=0,

解得:x1=8,x2=-10(不合题意,舍去).

答:每轮传染中平均一个人传染8个人.

(2)81+81×8=729(人).

答:经过三轮传染后共有729人会患流感.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.24、(1)A种足球50元,B种足球80元;(2)方案一:购买A种足球25个,B种足球25个;方案二:购买A种足球26个,B种足球24个;方案三:购买A种足球27个,B种足球23个.【解析】

(1)设A种品牌足球的单价为x元,B种品牌足球的单价为y元,根据“总费用=买A种足球费用+买B种足球费用,以及B种足球单价比A种足球贵30元”可得出关于x、y的二元一次方程组,解方程组即可得出结论;(2)设第二次购买A种足球m个,则购买B种足球(50-m)个,根据“总费用=买A种足球费用+买B种足球费用,以及B种足球不小于23个”

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论