2023年浙江省杭州市滨江区部分学校八年级数学第二学期期末调研试题含解析_第1页
2023年浙江省杭州市滨江区部分学校八年级数学第二学期期末调研试题含解析_第2页
2023年浙江省杭州市滨江区部分学校八年级数学第二学期期末调研试题含解析_第3页
2023年浙江省杭州市滨江区部分学校八年级数学第二学期期末调研试题含解析_第4页
2023年浙江省杭州市滨江区部分学校八年级数学第二学期期末调研试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如果等边三角形的边长为4,那么等边三角形的中位线长为A. B.4 C.6 D.82.如图,已知DE是直角梯形ABCD的高,将△ADE沿DE翻折,腰AD恰好经过腰BC的中点,则AE:BE等于()A.2:1 B.1:2 C.3:2 D.2:33.下列各式中从左到右的变形,是因式分解的是()A.a2b+ab2=ab(a+b) B.x2+x﹣5=(x﹣2)(x+3)+1C.x2+1=x(x+) D.(a+3)(a﹣3)=a2﹣94.计算的的结果是()A. B. C.4 D.165.用反证法证明“”,应假设()A. B. C. D.6.如图,在中,已知,分别为边,的中点,连结,若,则等于()A.70º B.67.5º C.65º D.60º7.能判定四边形ABCD是平行四边形的是()A.AD//BC,AB=CD B.∠A=∠B,∠C=∠DC.∠A=∠C,∠B=∠D D.AB=AD,CB=CD8.如果1≤a≤,则+|a﹣1|的值是()A.1 B.﹣1 C.2a﹣3 D.3﹣2a9.要关于x的一元二次方程mx2+2x+1=0有两个不相等的实数根,那么m的值可以是()A.2 B.1 C.0 D.﹣110.一次函数的图象如图所示,点在函数的图象上则关于x的不等式的解集是A. B. C. D.二、填空题(每小题3分,共24分)11.如图,点P是直线y=3上的动点,连接PO并将PO绕P点旋转90°到PO′,当点O′刚好落在双曲线(x>0)上时,点P的横坐标所有可能值为_____.12.已知一次函数的图像经过点(2,3),则的值为▲13.八年级(4)班有男生24人,女生16人,从中任选1人恰是男生的事件是_______事件(填“必然”或“不可能”或“随机”).14.如图,已知正方形ABCD,点E在AB上,点F在BC的延长线上,将正方形ABCD沿直线EF翻折,使点B刚好落在AD边上的点G处,连接GF交CD于点H,连接BH,若AG=4,DH=6,则BH=_____.15.如图,在中,,,,,分别为,,的中点,,则的长度为__.16.面积为的矩形,若宽为,则长为___.17.若关于x的分式方程的解为正数,则m的取值范围是_____.18.二次根式有意义的条件是__________.三、解答题(共66分)19.(10分)已知在菱形ABCD中,对角线AC、BD交于点O,AB=2AO;(1)如图1,求∠BAC的度数;(2)如图2,P为菱形ABCD外一点,连接AP、BP、CP,若∠CPB=120°,求证:CP+BP=AP;(3)如图3,M为菱形ABCD外一点,连接AM、CM、DM,若∠AMD=150°,CM=2,DM=2,求四边形ACDM的面积。20.(6分)小颖和小红两位同学在做投掷骰子(质地均匀的正方体)实验,他们共做了次实验,实验的结果如下:朝上的点数出现的次数(1)计算“点朝上”的频率和“点朝上”的频率.(2)小颖说:“根据实验得出,出现点朝上的机会最大”;小红说:“如果投掷次,那么出现点朝上的次数正好是次.”小颖和小红的说法正确吗?为什么?21.(6分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.22.(8分)新农村社区改造中,有一部分楼盘要对外销售.某楼盘共23层,销售价格如下:第八层楼房售价为4000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套房面积均为120米2.若购买者一次性付清所有房款,开发商有两种优惠方案:(方案一)降价8%,另外每套房赠送a元装修基金;(方案二)降价10%,没有其他赠送.(1)请写出售价y(元/米2)与楼层x(1≤x≤23,x取整数)之间的函数表达式;(2)老王要购买第十六层的一套房,若他一次性付清所有房款,请帮他计算哪种优惠方案更加合算.23.(8分)如图,已知直线y=+1与x轴、y轴分别交于点A、B,以线AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90o、点P(x、y)为线段BC上一个动点(点P不与B、C重合),设△OPA的面积为S。(1)求点C的坐标;(2)求S关于x的函数解析式,并写出x的的取值范围;(3)△OPA的面积能于吗,如果能,求出此时点P坐标,如果不能,说明理由.24.(8分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AE=5,OE=3,求线段CE的长.25.(10分)如图,在中,,,点、同时从点出发,以相同的速度分别沿折线、射线运动,连接.当点到达点时,点、同时停止运动.设,与重叠部分的面积为.(1)求长;(2)求关于的函数关系式,并写出的取值范围;(3)请直接写出为等腰三角形时的值.26.(10分)如图,平面直角坐标系中,,,点是轴上点,点为的中点.(1)求证:;(2)若点在轴正半轴上,且与的距离等于,求点的坐标;(3)如图2,若点在轴正半轴上,且于点,当四边形为平行四边形时,求直线的解析式.

参考答案一、选择题(每小题3分,共30分)1、A【解析】试题分析:根据三角形的中位线等于第三边一半的性质,得这个等边三角形的中位线长为2。故选A。2、A【解析】

画出图形,得出平行四边形DEBC,求出DC=BE,证△DCF≌△A′BF,推出DC=BA′=BE,求出AE=2BE,即可求出答案.【详解】解:∵将△ADE沿DE翻折,腰AD恰好经过腰BC的中点F,∴DF=FA′,∵DC∥AB,DE是高,ABCD是直角梯形,∴DE∥BC,∴四边形DEBC是平行四边形,∴DC=BE,∵DC∥AB,∴∠C=∠FBA′,在△DCF和△A′BF中,∴△DCF≌△A′BF(ASA),∴DC=BA′=BE,∵将△ADE沿DE翻折,腰AD恰好经过腰BC的中点,A和A′重合,∴AE=A′E=BE+BA′=2BE,∴AE:BE=2:1,故选A.【点睛】本题考查了矩形的性质,平行四边形的性质和判定,全等三角形的性质和判定,翻折变换等知识点的综合运用.3、A【解析】

根据因式分解的格式要求及提公因式法和公式法进行求解,并逐一判断即可得解.【详解】A.,故此选项正确;B.没把一个多项式转化成几个整式积的形式,不是因式分解,故此选项错误;C.没把一个多项式转化成几个整式积的形式(含有分式),不是因式分解,故此选项错误;D.是整式的乘法,不是因式分解,故此选项错误;故选:A.【点睛】本题主要考查了因式分解的相关概念,熟练掌握因式分解的格式及公式法与提公因式法进行因式分解的方法是解决本题的关键.4、C【解析】

根据算术平方根和平方根进行计算即可【详解】=4故选:C【点睛】此题考查算术平方根和平方根,掌握运算法则是解题关键5、D【解析】

根据命题:“a>0”的反面是:“a≤0”,可得假设内容.【详解】解:由于命题:“a>0”的反面是:“a≤0”,故用反证法证明:“a>0”,应假设“a≤0”,故选:D.【点睛】此题主要考查了反证法的步骤,熟记反证法的步骤:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.6、A【解析】

由题意可知DE是三角形的中位线,所以DE∥BC,由平行线的性质即可求出的度数.【详解】∵D,E分别为AB,AC的中点,∴DE是三角形的中位线,∴DE∥BC,∴∠AED=∠C=70°,故选A【点睛】此题考查平行线的性质,三角形中位线定理,难度不大7、C【解析】

根据平行四边形的判定定理依次确定即可.【详解】A.AD//BC,AB=CD,不能判定四边形ABCD是平行四边形,故不符合题意;B.∠A=∠B,∠C=∠D,不能判定四边形ABCD是平行四边形,故不符合题意;C.∠A=∠C,∠B=∠D,能判定四边形ABCD是平行四边形,故符合题意;D.AB=AD,CB=CD,不能判定四边形ABCD是平行四边形,故不符合题意;故选:C.【点睛】此题考查平行四边形的判定定理,熟记定理内容即可正确解答.8、A【解析】

直接利用a的取值范围进而化简二次根式以及绝对值得出答案.【详解】解:=2﹣a+a﹣1=1.故选:A.【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.9、D【解析】

根据一元二次方程的定义和判别式的意义得到m≠1且△=22-4m>1,然后求出两个不等式的公共部分即可.【详解】根据题意得m≠1且△=22﹣4m>1,解得m<1且m≠1.故选D.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=1(a≠1)的根与△=b2-4ac有如下关系:当△>1时,方程有两个不相等的两个实数根;当△=1时,方程有两个相等的两个实数根;当△<1时,方程无实数根.10、A【解析】

观察函数图象结合点P的坐标,即可得出不等式的解集.【详解】解:观察函数图象,可知:当时,.故选:A.【点睛】考查了一次函数与一元一次不等式以及一次函数的图象,观察函数图象,找出不等式的解集是解题的关键.二、填空题(每小题3分,共24分)11、,.【解析】

分点P在由在y轴的左侧和点P在y轴的右侧两种情况求解即可.【详解】当点P在由在y轴的左侧时,如图1,过点P作PM⊥x轴于点M,过点O′作O′N垂直于直线y=3于点N,∵∠OPN+∠NPO′=90°,∠PO′N+∠NPO′=90°,∴∠OPN=∠PO′N,∵直线y=3与x轴平行,∴∠POM=∠OPN,∴∠POM=∠PO′N,在△POM和△PO′N中,,∴△POM≌△PO′N,∴OM=O′N,PM=PN,设点P的横坐标为t,则OM=O′N=-t,PM=PN=3,∴GN=3+t,∴点O′的坐标为(3+t,3-t),∵点O′在双曲线(x>0)上,∴(3+t)(3-t)=6,解得,t=(舍去)或t=-,∴点P的横坐标为-;当点P在由在y轴的右侧时,如图2,过点O′作O′H垂直于直线y=3于点H,类比图1的方法易求点P的横坐标为,如图3,过点P作PE⊥x轴于点E,过点O′作O′F垂直于直线y=3于点F,类比图1的方法易求点P的横坐标为,综上,点P的横坐标为,.故答案为,.【点睛】本题是反比例函数与几何的综合题,正确作出辅助线,构造全等三角形是解决问题的关键,解决问题时要考虑全面,不要漏解.12、2.【解析】

将点(2,3)代入y=kx+k-3可得关于k的方程,解方程求出k的值即可.【详解】将点(2,3)代入一次函数y=kx+k−3,可得:3=2k+k−3,解得:k=2.故答案为2.【点睛】本题考查了一次函数的性质.13、随机【解析】

根据必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.即可解答【详解】从中任选一人,可能选的是男生,也可能选的是女生,故为随机事件【点睛】此题考查随机事件,难度不大14、6【解析】

通过证明△AEG∽△DGH,可得=,可设AE=2a,GD=3a,可求GE的长,由AB=AD,列出方程可求a的值,由勾股定理可求BH的长.【详解】解:∵将正方形ABCD沿直线EF翻折,使点B刚好落在AD边上的点G处,∴AB=AD=BC=CD,EG=BE,∠ABC=∠EGH=90°∵∠AGE+∠DGH=90°,∠AGE+∠AEG=90°∴∠AEG=∠DGH,且∠A=∠D=90°∴△AEG∽△DGH∴=∴设AE=2a,GD=3a,∴GE==∵AB=AD∴2a+=4+3a∴a=∴AB=AD=BC=CD=12,∴CH=CD﹣DH=12﹣6=6∴BH==6故答案为:6.【点睛】本题考查了翻折变换,正方形的性质,相似三角形的判定和性质,勾股定理,利用参数列出方程是本题的关键.15、6【解析】

因为在中,∴AB=2BC又D为AB中点,∴CD=AD=BD=BC=AB又E,F分别为AC,AD的中点,∴EF=CD,所以CD=2EF=6故BC为6【点睛】本题主要考查三角形的基本概念和直角三角形。16、2【解析】

根据矩形的面积公式列式计算即可.【详解】解:由题意,可知该矩形的长为:÷==2.

故答案为2【点睛】本题考查了二次根式的应用,掌握矩形的面积公式以及二次根式的除法法则是解题的关键.17、m>1【解析】

先解关于x的分式方程,求得x的值,然后再依据“解是正数”建立不等式求m的取值范围.【详解】解:去分母得,m-1=2x+2,

解得,x=,

∵方程的解是正数,

∴m-1>2,

解这个不等式得,m>1,

∵+1≠2,

∴m≠1,

则m的取值范围是m>1.

故答案为:m>1.【点睛】本题考查了分式方程的解,解题关键是要掌握方程的解的定义,使方程成立的未知数的值叫做方程的解.注意分式方程分母不等于2.18、【解析】

根据被开方式大于零列式求解即可.【详解】由题意得x-3>0,∴x>3.故答案为:x>3.【点睛】本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.三、解答题(共66分)19、(1)∠BAC=60°;(2)见解析;(3).【解析】

(1)如图1中,证明△ABC是等边三角形即可解决问题.(2)在PA上截取PH,使得PH=PC,连接CH.证明△PCB≌△HCA(SAS)即可;(3)如图3中,作AH⊥DM交DM的延长线于H,延长AC到N,使得CN=AC,连接DN.证明A,N,D,M四点共圆,外接圆的圆心是点C,推出AD=CM=,解直角三角形求出AH即可解决问题.【详解】解:(1)如图1中,∵四边形ABCD是菱形,∴AC⊥BD,∠ABD=∠CBD,∴∠AOB=90°,∵AB=2OA,∴∠ABO=30°,∴∠ABC=60°,∵BA=BC,∴△ABC是等边三角形,∴∠BAC=60°;(2)证明:如图2中,在PA上截取PH,使得PH=PC,连接CH.∵∠BPC=120°,∠BAC=60°,∴∠BPC+∠BAC=180°,∴A,B,P,C四点共圆,∴∠APC=∠ABC=60°,∵PH=PC,∴△PCH是等边三角形,∴PC=CH,∠PCH=∠ACB=60°,∴∠PCB=∠HCA,∵CB=CA,CP=CH,∴△PCB≌△HCA(SAS),∴PB=AH,∴PA=PH+AH=PC+PB;(3)解:如图3中,作AH⊥DM交DM的延长线于H,延长AC到N,使得CN=AC,连接DN.∵CA=CD=CN,∴∠ADN=90°,∵CD=CN,∴∠N=∠CDN,∵∠ACD=60°=∠N+∠CDN,∴∠N=30°,∵∠AMD=150°,∴∠N+∠AMD=180°,∴A,N,D,M四点共圆,外接圆的圆心是点C,∴CA=CD=AD=CM=,在Rt△AHM中,∵∠AMH=30°,∴MH=AH,设AH=x,则HM=x,在Rt△ADH中,∵AD2=AH2+DH2,∴28=x2+(x+2)2,解得x=或-2(舍弃),∴AH=,∴S四边形ACDM=S△ACD+S△ADM=×+×2×=.【点睛】本题属于四边形综合题,考查了菱形的性质,等边三角形的判定和性质,解直角三角形,四点共圆,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.20、(1);;(2)两人的说法都是错误的,见解析.【解析】

(1)根据概率的公式计算“3点朝上”的频率和“5点朝上”的频率;(2)根据随机事件的性质回答.【详解】(1)“点朝上”出现的频率是,“点朝上”出现的频率是;(2)两人的说法都是错误的,因为一个随机事件发生的概率是由这个随机事件自身决定的,并客观存在。随机事件发生的可能性大小由随机事件自身的属性即概率决定。因此去判断事件发生的可能性大小不能由此次实验中的频率决定。【点睛】用到的知识点为:频率=所求情况数与总情况数之比.频率能反映出概率的大小,但是要经过n次试验,而不是有数的几次,几次试验属于随机事件,不能反映事物的概率.21、(1)见解析;(2)见解析;【解析】

(1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等的性质,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF.(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF.根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.【详解】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,在△ABE和△CDF中,∵AB=CD,∠A=∠C,AE=CF,∴△ABE≌△CDF(SAS).(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF.∴四边形BFDE是平行四边形.22、(1);(2)当每套房赠送的装修基金多于10560元时,选择方案一合算;当每套房赠送的装修基金等于10560元时,两种方案一样;当每套房赠送的装修基金少于10560元时,选择方案二合算.【解析】

解:(1)当1≤x≤8时,每平方米的售价应为:y=4000﹣(8﹣x)×30="30x+3760"(元/平方米)当9≤x≤23时,每平方米的售价应为:y=4000+(x﹣8)×50=50x+3600(元/平方米).∴(2)第十六层楼房的每平方米的价格为:50×16+3600=4400(元/平方米),按照方案一所交房款为:W1=4400×120×(1﹣8%)﹣a=485760﹣a(元),按照方案二所交房款为:W2=4400×120×(1﹣10%)=475200(元),当W1>W2时,即485760﹣a>475200,解得:0<a<10560,当W1<W2时,即485760﹣a<475200,解得:a>10560,∴当0<a<10560时,方案二合算;当a>10560时,方案一合算.【点睛】本题考查的是用一次函数解决实际问题,读懂题目信息,找出数量关系表示出各楼层的单价以及是交房款的关系式是解题的关键.23、(1)(4,3);(2)S=,0<x<4;(3)不存在.【解析】

(1)直线y=+1与x轴、y轴分别交于点A、B,可得点A、B的坐标,过点C作CH⊥x轴于点H,如图1,易证△AOB≌△CHA,从而得到AH=OB、CH=AO,就可得到点C的坐标;(2)易求直线BC解析式,过P点作PG垂直x轴,由△OPA的面积=即可求出S关于x的函数解析式.(3)当S=求出对应的x即可.【详解】解:(1)∵直线y=+1与x轴、y轴分别交于点A、B,∴A点(3,0),B点为(0,1),如图:过点C作CH⊥x轴于点H,则∠AHC=90°.

∴∠AOB=∠BAC=∠AHC=90°,

∴∠OAB=180°-90°-∠HAC=90°-∠HAC=∠HCA.

在△AOB和△CHA中,,

∴△AOB≌△CHA(AAS),

∴AO=CH=3,OB=HA=1,

∴OH=OA+AH=4∴点C的坐标为(4,3);(2)设直线BC解析式为y=kx+b,由B(0,1),C(4,3)得:,解得,∴直线BC解析式为,过P点作PG垂直x轴,△OPA的面积=,∵PG=,OA=3,∴S==;点P(x、y)为线段BC上一个动点(点P不与B、C重合),∴0<x<4.∴S关于x的函数解析式为S=,x的的取值范围是0<x<4;(3)当s=时,即,解得x=4,不合题意,故P点不存在.【点睛】本题主要考查了一次函数图象上点的坐标特征、全等三角形的判定与性质、勾股定理、三角形的面积公式等知识,构造全等三角形是解决第(1)小题的关键.24、(1)证明见解析;(2).【解析】

(1)先判断出∠OAB=∠DCA,进而判断出∠DAC=∠DAC,得出CD=AD=AB,即可得出结论;

(2)四边形ABCD是菱形可得OA=OC,由直角三角形斜边中线等于斜边一半可知,在Rt△AEC中,AC=2OE=6,再由勾股定理求出CE..【详解】解:(1)∵AB∥CD,

∴∠OAB=∠DCA,

∵AC为∠DAB的平分线,

∴∠OAB=∠DAC,

∴∠DCA=∠DAC,

∴CD=AD=AB,

∵AB∥CD,

∴四边形ABCD是平行四边形,

∵AD=AB,

∴▱ABCD是菱形;

(2)∵四边形ABCD是菱形,

∴OA=OC,

∵CE⊥AB,OE=3,

∴AC=2OE=6,

在Rt△AEC中,∴CE===.【点睛】此题主要考查了菱形的判定和性质,直角三角形性质,勾股定理,由直角三角形斜边中线等于斜边一半判断出AC=2OE是解本题的关键.25、(1);(2);(3)或.【解析】

(1)过点A作AM⊥BC于点M,由等腰三角形的性质可得∠B=∠C=30°,BM=CM=BC,由直角三角形的性质可得BM=2,即可求BC的值;

(2)分点P在AB上,点P在AC上,点Q在BC的延长线上时,三种情况讨论,由三角形的面积公式可求S关于x的函数关系式;

(3)分两种情况讨论,由等腰三角形的性质可求解.【详解】解:(1)过点作于点,∵,,∴,.在中,,,∴,∴,.∴.(2)因为点,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论