2023年内蒙古自治区乌海市数学八年级第二学期期末达标检测模拟试题含解析_第1页
2023年内蒙古自治区乌海市数学八年级第二学期期末达标检测模拟试题含解析_第2页
2023年内蒙古自治区乌海市数学八年级第二学期期末达标检测模拟试题含解析_第3页
2023年内蒙古自治区乌海市数学八年级第二学期期末达标检测模拟试题含解析_第4页
2023年内蒙古自治区乌海市数学八年级第二学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.分式有意义,则x的取值范围是()A.x1 B.x0 C.x1 D.x12.如图,在Rt△ABC中,AC=4,∠ABC=90°,BD是△ABC的角平分线,过点D作DE⊥BD交BC边于点E.若AD=1,则图中阴影部分面积为()A.1 B.1.5 C.2 D.2.53.对于函数y=3-x,下列结论正确的是()A.y的值随x的增大而增大 B.它的图象必经过点(-1,3)C.它的图象不经过第三象限 D.当x>1时,y<0.4.环保部门根据我市一周的检测数据列出下表.这组数据的中位数是A. B. C. D.5.如图,在矩形纸片中,,,将纸片折叠,使点落在边上的点处,折痕为,再将沿向右折叠,点落在点处,与交于点,则的面积为()A.4 B.6 C.8 D.106.如图,一次函数与一次函数的图象交于点P(1,3),则关于x的不等式的解集是()A.x>2 B.x>0 C.x>1 D.x<17.如图,沿直线边BC所在的直线向右平移得到,下列结论中不一定正确的是A. B.C. D.8.某多边形的每个内角均为120°,则此多边形的边数为().A.5B.6C.7D.89.在中,点为的中点,平分,且于点,延长交于点,若,,则的长为()A. B.1 C. D.210.下列计算正确的是()A.×=4 B.+= C.÷=2 D.=﹣1511.关于x的一元二次方程(k﹣1)x2﹣2x+3=0有两个实数根,则k的取值范围是()A.k≤且k≠1 B.k≤ C.k<且k≠1 D.k<12.如图,在△ABC中,AB=AC,AD是中线,DE⊥AB,DF⊥AC,垂足分别为E,F,则下列四个结论中:①AB上任一点与AC上任一点到D的距离相等;②AD上任一点到AB,AC的距离相等;③∠BDE=∠CDF;④∠1=∠2;其中正确的有()A.1个 B.2个 C.3个 D.4个二、填空题(每题4分,共24分)13.如图,一架云梯长米,斜靠在一面墙上,梯子顶端离地面米,要使梯子顶端离地面米,则梯子的底部在水平面方向要向左滑动______米.14.正方形的边长为,则这个正方形的对角线长为_________.15.已知:,则______.16.如图,矩形ABCD中,,,将矩形折叠,使点B与点D重合,点A的对应点为,折痕EF的长为________.17.如图,矩形中,是上一点(不与重合),点在边上运动,分别是的中点,线段长度的最大值是__________.18.在△ABC中,BC=a.作BC边的三等分点C1,使得CC1:BC1=1:2,过点C1作AC的平行线交AB于点A1,过点A1作BC的平行线交AC于点D1,作BC1边的三等分点C2,使得C1C2:BC2=1:2,过点C2作AC的平行线交AB于点A2,过点A2作BC的平行线交A1C1于点D2;如此进行下去,则线段AnDn的长度为______________.三、解答题(共78分)19.(8分)如图,在中,按如下步骤作图:①以点A为圆心,AB长为半径画弧;②以点C为圆心,CB长为半径画弧,两弧相交于点D;③连接BD,与AC交于点E,连接AD、CD;(1)求证:;(2)当时,猜想四边形ABCD是什么四边形,并证明你的结论;(3)当,,现将四边形ABCD通过割补,拼成一个正方形,那么这个正方形的边长是多少?20.(8分)(1)计算:(2)计算:21.(8分)如图,反比例函数y=(n为常数,n≠0)的图象与一次函数y=kx+8(k为常数,k≠0)的图象在第三象限内相交于点D(﹣,m),一次函数y=kx+8与x轴、y轴分别相交于A、B两点.已知cos∠ABO=.(1)求反比例函数的解析式;(2)点P是x轴上的动点,当△APC的面积是△BDO的面积的2倍时,求点P的坐标.22.(10分)如图,路灯(点)距地面8米,身高1.6米的小明从距路灯的底部(点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了;变长或变短了多少米.23.(10分)直线与轴轴分别交于点A和点B,M是OB上一点,若将△ABM沿AM折叠,点B恰好落在轴上的点B′处,试求出直线AM的解析式.24.(10分)在一条笔直的公路上依次有A,C,B三地,甲、乙两人同时出发,甲从A地骑自行车去B地,途经C地休息1分钟,继续按原速骑行至B地,甲到达B地后,立即按原路原速返回A地;乙步行从B地前往A地.甲、乙两人距A地的路程y(米)与时间x(分)之间的函数关系如图所示,请结合图象解答下列问题:(1)请写出甲的骑行速度为米/分,点M的坐标为;(2)求甲返回时距A地的路程y与时间x之间的函数关系式(不需要写出自变量的取值范围);(3)请直接写出两人出发后,在甲返回A地之前,经过多长时间两人距C地的路程相等.25.(12分)已知:如图,四边形ABCD为矩形,AB=10,BC=3,点E是CD的中点,点P在AB上以每秒2个单位的速度由A向B运动,设运动时间为t秒.(1)当点P在线段AB上运动了t秒时,BP=__________________(用代数式表示);(2)t为何值时,四边形PDEB是平行四边形:(3)在直线AB上是否存在点Q,使以D、E、Q、P四点为顶点的四边形是菱形?若存在,求出t的值:若不存在,说明理由.26.菱形ABCD的对角线AC、DB相交于点O,P是射线DB上的一个动点(点P与点D,O,B都不重合),过点B,D分别向直线PC作垂线段,垂足分别为M,N,连接OM.ON.(1)如图1,当点P在线段DB上运动时,证明:OM=ON.(2)当点P在射线DB上运动到图2的位置时,(1)中的结论仍然成立.请你依据题意补全图形:并证明这个结论.(3)当∠BAD=120°时,请直接写出线段BM,DN,MN之间的数量关系.

参考答案一、选择题(每题4分,共48分)1、C【解析】分析:根据分式有意义的条件可得x﹣1≠0,再解不等式即可.详解:由题意得:x﹣1≠0,解得:x≠1.故选C.点睛:本题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.2、B【解析】

作DH⊥BC于H,得到△DEB是等腰直角三角形,设DH=BH=EH=a,证明△CDH∽△CAB,得到,求得AB=,CE=2a,根据得到,利用阴影面积=求出答案.【详解】作DH⊥BC于H,∵∠ABC=90°,BD是△ABC的角平分线,∴∠ABD=∠DBC=45°,∴△DEB是等腰直角三角形,设DH=BH=EH=a,∵DH∥AB,∴△CDH∽△CAB,∴,∵AD=1,∴AC=4,∴,∴AB=,CE=2a,∵,∴,∴=1,∴,∴图中阴影部分的面积====故选:B.【点睛】此题考查等腰直角三角形的判定及性质,相似三角形的判定及性质,求不规则图形的面积,根据阴影图形的特点确定求面积的方法进而进行计算是解答问题的关键.3、C【解析】

根据函数的增减性判断A;将(-1,3)的横坐标代入函数解析式,求得y,即可判断B;根据函数图像与系数的关系判断C;根据函数图像与x轴的交点可判断D.【详解】函数y=3-x,k=-1<0,b=3>0,所以函数经过一、二、四象限,y随x的增大而减小,故A错误,C正确;当x=-1时,y=4,所以图像不经过(-1,3),故B错误;当y=0时,x=3,又因为y随x的增大而减小,所以当x>3时,y<0,故D错误.故答案为C.【点睛】本题考查一次函数的图像与性质,熟练掌握图像与系数的关系,数形结合是解决函数类问题的关键.4、C【解析】

将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.【详解】根据中位数的概念,可知这组数据的中位数为:21故答案选:C【点睛】本题考查中位数的概念,将一组数据从小到大或从大到小重新排列后,最中间的那个数或者最中间两个数的平均数叫做这组数据中位数,如果中位数的概念掌握不好,不把数据按照要求重新排列,就会出错.5、C【解析】

此题关键是求出CH的长,根据两次折叠后的图像中△GBH∽△ECH,得到对应线段成比例即可求解.【详解】由图可知经过两次折叠后,GB=FG-BF=FG-(10-FG)=2BF=EC=10-FG=4,∵FG∥EC,∴△GBH∽△ECH∴∵GB=2,EC=4,∴CH=2BH,∵BC=BH+CH=6,∴CH=4,∴S△ECH=EC×CH=×4×4=8.故选C【点睛】此题主要考查矩形的折叠问题,解题的关键是熟知相似三角形的判定与性质.6、D【解析】【分析】观察函数图象得到当x<1时,函数y=x+b的图象都在y=kx+4的图象下方,所以关于x的不等式x+b<kx+4的解集为x<1.【解答】当x<1时,x+b<kx+4,即不等式x+b<kx+4的解集为x<1,故选D.【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.7、C【解析】

由平移的性质,结合图形,对选项进行一一分析,选择正确答案.【详解】沿直线边BC所在的直线向右平移得到,,,,,,,,但不能得出,故选C.【点睛】本题考查了平移的基本性质:平移不改变图形的形状和大小;经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.8、B【解析】先求出多边形的每一个外角的度数,再利用多边形的外角和即可求出答案.

解:

∵多边形的每一个内角都等于120°,多边形的内角与外角互为邻补角,

∴每个外角是度60°,

多边形中外角的个数是360÷60°=60°,则多边形的边数是6.

故选B.9、B【解析】

根据等腰三角形三线合一的性质可得BD-DN,AB-AN,再求出CN,然后判断出DM是ABCN的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半解答即可.【详解】解:∵AD为∠BAC的平分线,BD⊥AD∴BD=DN,AB=AN=4,∴CN=AC-AN-6-4=2又∵M为△ABC的边BC的中点∴DM是△BCN的中位线,∴мD=CN=×2=1,故选:B.【点睛】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等腰三角形三线合一的性质,熟记定理与性质并作辅助线构造出以MD为中位线的三角形是解题的关键.10、C【解析】试题分析:A、,故A选项错误;B、+不能合并,故B选项错误;C、.故C选项正确;D、=15,故D选项错误.故选C.考点:1.二次根式的乘除法;2.二次根式的性质与化简;3.二次根式的加减法.11、A【解析】

根据一元二次方程的定义和根的判别式的意义可得,然后求出两个不等式的公共部分即可.【详解】解:根据题意得解得所以k的范围为故选A.【点睛】本题考查了一元二次方程的根的判别式:当,方程有两个不相等的实数根;当,方程有两个相等的实数根;,方程没有实数根,熟知这些是解题关键.12、C【解析】试题分析:根据等腰三角形的三线合一定理可得:∠1=∠2,∠BDE=∠CDF,根据角平分线的性质可知:AD上任一点到AB、AC的距离相等,故正确的有3个,选C.二、填空题(每题4分,共24分)13、【解析】

如图,先利用勾股定理求出BC的长,再利用勾股定理求出CE的长,根据BE=BC-CE即可得答案.【详解】如图,AB=DE=10,AC=6,DC=8,∠C=90°,∴BC==8,CE==6,∴BE=BC-CE=2(米),故答案为2.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题的关键.14、1【解析】

如图(见解析),先根据正方形的性质可得,再利用勾股定理即可得.【详解】如图,四边形ABCD是边长为正方形则由勾股定理得:即这个正方形的两条对角线相等,长为1故答案为:1.【点睛】本题考查了正方形的性质、勾股定理,掌握理解正方形的性质是解题关键.15、【解析】

首先根据二次根式有意义的条件和分式有意义的条件列出不等式,求出x的值,然后可得y的值,易求结果.【详解】解:由题意得:,∴x=-2,∴y=3,∴,故答案为:.【点睛】本题考查了二次根式和分式的性质,根据他们各自的性质求出x,y的值是解题关键.16、【解析】

过点F作FH⊥AD于H,先利用矩形的性质及轴对称的性质证明DE=DF=BF,在Rt△DCF中通过勾股定理求出DF的长,再求出HE的长,再在Rt△HFE中利用勾股定理即可求出EF的长.【详解】解:如图,过点F作FH⊥AD于H,∵四边形ABCD为矩形,∴BC∥AD,∠C=90°,DC=AB=4,四边形DCFH为矩形,∴∠BFE=∠DEF,由折叠可知,∠BFE=∠DFE,BF=DF,∴∠DEF=∠DFE,∴DE=DF=BF,在Rt△DCF中设DF=x,则CF=BC-BF=6-x,∵DC2+CF2=DF2,∴42+(6-x)2=x2,解得,x=,∴DE=DF=BF=,∴CF=BC-BF=6-=,∵四边形DCFH为矩形,∴HF=CD=4,DH=CF=,∴HE=DE-DH=,∴在Rt△HFE中,故答案为【点睛】本题考查了矩形的性质,轴对称的性质,勾股定理等,解题关键是能够灵活运用矩形的性质及轴对称的性质.17、5【解析】

根据矩形的性质求出AC,然后求出AP的取值范围,再根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AP.【详解】解:∵矩形ABCD中,AB=6,BC=8,

∴对角线AC=10,∵P是CD边上的一动点,

∴8≤AP≤10,

连接AP,

∵M,N分别是AE、PE的中点,

∴MN是△AEP的中位线,

∴,MN=AP.∴MN最大长度为5.【点睛】本题考查了矩形的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质以及定理并求出AP的取值范围是解题的关键.18、【解析】

根据平行四边形的判定定理得到四边形A1C1CD1为平行四边形,根据平行四边形的性质得到A1D1=C1C,总结规律,根据规律解答.【详解】∵A1C1∥AC,A1D1∥BC,∴四边形A1C1CD1为平行四边形,∴A1D1=C1C=a=,同理,四边形A2C2C1D2为平行四边形,∴A2D2=C1C2=a=,……∴线段AnDn=,故答案为:.【点睛】本题考查的是平行四边形的判定和性质、图形的变化规律,掌握平行四边形的判定定理和性质定理是解题的关键.三、解答题(共78分)19、(1)证明见解析(2)四边形ABCD是菱形(3)【解析】

(1)依据条件证即可;(2)依据四条边都相等的四边形是菱形判定即可;(3)割补后,图形的面积不变,故正方形的面积就等于菱形的面积,求出菱形面积即可得正方形的边长.【详解】(1)证明:在和中,,,;(2)解:四边形ABCD是菱形,理由如下:,,,,四边形ABCD是菱形;(3)解:,,,四边形ABCD的面积,拼成的正方形的边长.【点睛】本题主要考查了三角形的全等的证明、菱形的判定、正方形的性质,正确理解作图步骤获取有用条件是解题的关键.20、(1)15;(2).【解析】

(1)先进行二次根式的化简,然后再根据二次根式乘除法的运算法则进行计算即可;(2)先分别化简各个二次根式,然后再进行合并即可.【详解】(1)原式=3×5÷=15÷=15;(2)原式=3﹣4+=-+.【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.21、(1)y=x+1,y=(2)(﹣11,0)或(6,0)【解析】

(1)求得A(﹣6,0),即可得出一次函数解析式为y=x+1,进而得到D(,﹣2),即可得到反比例函数的解析式为y=;(2)解方程组求得C(,10),依据△APC的面积是△BDO的面积的2倍,即可得到AP=12,进而得到P(﹣11,0)或(6,0).【详解】解:(1)∵一次函数y=kx+1与y轴交于点B,∴B(0,1).∵在Rt△AOB中,cos∠ABO=,∴tan∠BAO=,∴AO=6,∴A(﹣6,0).∵点A在一次函数y=kx+1图象上,∴k=,∴一次函数解析式为y=x+1.∵点D(,m)在一次函数y=kx+1图象上,∴m=﹣2,即D(,﹣2),∵点D(,﹣2)在反比例函数y=图象上,∴n=2.∴反比例函数的解析式为y=;(2)∵点C是反比例函数y=图象与一次函数y=x+1图象的交点,∴,解得,∴C(,10).∵△APC的面积是△BDO的面积的2倍,∴AP×10=×1×,∴AP=12,又∵A(﹣6,0),点P是x轴上的动点,∴P(﹣11,0)或(6,0).【点睛】本题考查反比例函数与一次函数的交点、用待定系数法求函数解析式、三角函数、三角形面积的计算等知识;求出点A和D的坐标是解决问题的关键.22、变短了1.5米.【解析】

如图,由于AC∥BD∥OP,故有△MAC∽△MOP,△NBD∽△NOP即可由相似三角形的性质求解.【详解】解:∵∠MAC=∠MOP=90°,∠AMC=∠OMP,∴△MAC∽△MOP.∴,即,解得,MA=5米;同理,由△NBD∽△NOP,可求得NB=1.5米,∴小明的身影变短了5﹣1.5=1.5米.【点睛】本题考查相似三角形的应用,掌握相似三角形的判定和性质正确推理计算是解题关键.23、y=-0.5x+1【解析】

先确定点A、点B的坐标,再由AB=AB',可得AB'的长度,求出OB'的长度,即可得出点B'的坐标;设OM=m,则B'M=BM=8-m,在Rt△OMB'中利用勾股定理求出m的值,得出M的坐标后,利用待定系数法可求出AM所对应的函数解析式.【详解】解:y=-x+8,令x=0,则y=8,令y=0,则x=6,∴A(6,0),B(0,8),∴OA=6,OB=8AB=10,∵AB'=AB=10,∴OB'=10-6=4,∴B'的坐标为:(-4,0).设OM=m,则B'M=BM=8-m,在Rt△OMB'中,m2+42=(8-m)2,解得:m=1,∴M的坐标为:(0,1),设直线AM的解析式为y=kx+b,则,解得:,故直线AM的解析式为:y=-0.5x+1.【点睛】本题考查了一次函数的综合,涉及了待定系数法求函数解析式、勾股定理及翻折变换的性质,解答本题的关键是数形结合思想的应用,难度一般.24、(1)240,(6,1200);(2)y=﹣240x+2640;(3)经过4分钟或6分钟或8分钟时两人距C地的路程相等.【解析】

(1)根据函数图象得出AB两地的距离,由行程问题的数量关系由路程÷时间=速度就可以求出结论;(2)先由行程问题的数量关系求出M、N的坐标,设y与x之间的函数关系式为y=kx+b,由待定系数法就可以求出结论;(3)设甲返回A地之前,经过x分两人距C地的路程相等,可得乙的速度:1200÷20=60(米/分),分别分①当0<x≤3时②当3<x<﹣1时③当<x≤6时④当x=6时⑤当x>6时5种情况讨论可得经过多长时间两人距C地的路程相等.【详解】(1)由题意得:甲的骑行速度为:=240(米/分),240×(11﹣1)÷2=1200(米),则点M的坐标为(6,1200),故答案为:240,(6,1200);(2)设MN的解析式为:y=kx+b(k≠0),∵y=kx+b(k≠0)的图象过点M(6,1200)、N(11,0),∴,解得,∴直线MN的解析式为:y=﹣240x+2640;即甲返回时距A地的路程y与时间x之间的函数关系式:y=﹣240x+2640;(3)设甲返回A地之前,经过x分两人距C地的路程相等,乙的速度:1200÷20=60(米/分),如图1所示:∵AB=1200,AC=1020,∴BC=1200﹣1020=180,分5种情况:①当0<x≤3时,1020﹣240x=180﹣60x,x=>3,此种情况不符合题意;②当3<x<﹣1时,即3<x<,甲、乙都在A、C之间,∴1020﹣240x=60x﹣180,x=4,③当<x≤6时,甲在B、C之间,乙在A、C之间,∴240x﹣1020=60x﹣180,x=<,此种情况不符合题意;④当x=6时,甲到B地,距离C地180米,乙距C地的距离:6×60﹣180=180(米),即x=6时两人距C地的路程相等,⑤当x>6时,甲在返回途中,当甲在B、C之间时,180﹣[240(x﹣1)﹣1200]=60x﹣180,x=6,此种情况不符合题意,当甲在A、C之间时,240(x﹣1)﹣1200﹣180=60x﹣180,x=8,综上所述,在甲返回A地之前,经过4分钟或6分钟或8分钟时两人距C地的路程相等.【点睛】本题考查了待定系数法一次函数的解析式的运用,一次函数与二元一次方程组的关系的运用,行程问题的数量关系的运用,注意由图像得出有用的信息及分类讨论思想在解题时的应用..25、(1)10-2t;(2)当t=2.5s时,四边形PDEB是平行四边形;(3)t的值为12s或2s或【解析】

(1)求出PA,根据线段和差定义即可解决问题.(2)根据PB=DE,构建方程即可解决问题.(3)①当EP=ED=5时,可得四边形DEPQ,四边

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论