2023年山西省平定县联考数学八年级第二学期期末监测模拟试题含解析_第1页
2023年山西省平定县联考数学八年级第二学期期末监测模拟试题含解析_第2页
2023年山西省平定县联考数学八年级第二学期期末监测模拟试题含解析_第3页
2023年山西省平定县联考数学八年级第二学期期末监测模拟试题含解析_第4页
2023年山西省平定县联考数学八年级第二学期期末监测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.计算=()A. B. C. D.2.若代数式有意义,则实数的取值范围是()A. B. C. D.3.要使二次根式x-3有意义,x的值可以是()A.0 B.1 C.2 D.34.下列式子中y是x的正比例函数的是()A.y=3x-5 B.y= C.y= D.y=25.已知二次函数y=ax2+bx+c的x与y的部分对应值如下表:x…-3-2-1113…y…-27-13-335-3…下列结论:①a<1;②方程ax2+bx+c=3的解为x1=1,x2=2;③当x>2时,y<1.其中所有正确结论的序号是()A.①②③ B.① C.②③ D.①②6.如图,在平面直角坐标系xOy中,点A、C、F在坐标轴上,E是OA的中点,四边形AOCB是矩形,四边形BDEF是正方形,若点C的坐标为(3,0),则点D的坐标为()A.(1,2.5) B.(1,1+) C.(1,3) D.(﹣1,1+)7.下列图形既是轴对称图形,又是中心对称图形的是()A. B. C. D.8.下列运算,正确的是()A. B. C. D.9.如图,矩形内三个相邻的正方形面积分别为4,3和2,则图中阴影部分的面积为()A.2 B.C. D.10.关于数据-4,1,2,-1,2,下面结果中,错误的是()A.中位数为1 B.方差为26 C.众数为2 D.平均数为011.菱形的边长是2cm,一条对角线的长是2cm,则另一条对角线的长是()A.4cm B.cm C.2cm D.2cm12.若一次函数y=m-1x-3的图象经过第二、三、四象限,则A.m>0 B.m<0 C.m>1 D.m<1二、填空题(每题4分,共24分)13.若x1,x2是方程x2+x−1=0的两个根,则x12+x22=____________.14.分式的值为0,那么的值为_____.15.如图,在中,,,的周长是10,于,于,且点是的中点,则的长是______.16.命题“对角线相等的平行四边形是矩形”的逆命题为________________________17.直线y=3x-2与x轴的交点坐标为____________________18.直线y=2x+6经过点(0,a),则a=_____.三、解答题(共78分)19.(8分)如图,反比例函数y=的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1).(1)求反比例函数与一次函数的表达式;(2)点E为y轴上一个动点,若S△AEB=10,求点E的坐标.(3)结合图像写出不等式的解集;20.(8分)如图,直线经过矩形的对角线的中点,分别与矩形的两边相交于点、.(1)求证:;(2)若,则四边形是______形,并说明理由;(3)在(2)的条件下,若,,求的面积.21.(8分)如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后,折叠DE分别交AB、AC于E、G,连接GF,下列结论:①∠FGD=112.5°②BE=2OG③S△AGD=S△OGD④四边形AEFG是菱形()A.1个 B.2个 C.3个 D.4个22.(10分)如图,在△ABC中,∠ABC=90°,将△ABC绕点C顺时针旋转得到△DEC,连接AD,BE,延长BE交AD于点F.(1)求证:∠DEF=∠ABF;(2)求证:F为AD的中点;(3)若AB=8,AC=10,且EC⊥BC,求EF的长.23.(10分)四边形ABCD是正方形,AC与BD,相交于点O,点E、F是直线AD上两动点,且AE=DF,CF所在直线与对角线BD所在直线交于点G,连接AG,直线AG交BE于点H.(1)如图1,当点E、F在线段AD上时,求证:∠DAG=∠DCG;(2)如图1,猜想AG与BE的位置关系,并加以证明;(3)如图2,在(2)条件下,连接HO,试说明HO平分∠BHG.24.(10分)今年,我区某中学响应“足球进校园”的号召,开设了“足球大课间”活动.现需要购进100个某品牌的足球供学生使用.经调查,该品牌足球2017年单价为200元,2019年单价为162元.(1)求2017年到2019年该品牌足球单价平均每年降低的百分率;(2)选购期间发现该品牌足球在标价162元的基础上,两个文体用品商店有下列不同的促销方案,试问去哪个商店买足球更优惠?25.(12分)为了了解全校名学生的阅读兴趣,从中随机抽查了部分同学,就“我最感兴趣的书籍”进行了调查:A.小说、B.散文、C.科普、D.其他(每个同学只能选择一项),进行了相关统计,整理并绘制出两幅不完整的统计图,请你根据统计图提供的信息,解答下列问题:(1)本次抽查中,样本容量为;(2),;(3)扇形统计图中,其他类书籍所在扇形的圆心角是°;(4)请根据样本数据,估计全校有多少名学生对散文感兴趣.26.列分式方程解应用题:今年植树节,某校师生到距学校20千米的公路旁植树,一班师生骑自行车先走,走了16千米后,二班师生乘汽车出发,结果同时到达.已知汽车的速度比自行车的速度每小时快60千米,求两种车的速度各是多少?

参考答案一、选择题(每题4分,共48分)1、A【解析】

直接利用二次根式的性质化简得出答案.【详解】解:原式==.故选:A.【点睛】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.2、B【解析】

利用二次根式和分式有意义的条件即可得出答案.【详解】解:∵代数式有意义,∴x≥0,x-1≠0,

解得:x≥0且x≠1.故选:B【点睛】此题主要考查了二次根式和分式有意义的条件,正确把握定义是解题关键.3、D【解析】

根据二次根式有意义的条件可得x-3≥0,再解即可.【详解】由题意得:x−3⩾0,解得:x⩾3,故选:D.【点睛】此题考查二次根式有意义的条件,解题关键在于掌握其定义.4、C【解析】

根据正比例函数的定义:形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数进行分析即可.【详解】解:A、y=3x-5,是一次函数,不是正比例函数,故此选项错误;B、y=,是反比例函数,不是正比例函数,故此选项错误;C、y=x是正比例函数,故此选项正确;D、y=2不是正比例函数,故此选项错误;故选:C.【点睛】此题主要考查了正比例函数定义,关键是掌握正比例函数的一般形式.5、D【解析】

根据表格数据求出二次函数的对称轴为直线x=1,然后根据二次函数的性质对各小题分析判断即可得解.【详解】解:①由图表中数据可知:x=−1和3时,函数值为−3,所以,抛物线的对称轴为直线x=1,而x=1时,y=5最大,所以二次函数y=ax2+bx+c开口向下,a<1;故①正确;②∵二次函数y=ax2+bx+c的对称轴为x=1,在(1,3)的对称点是(2,3),∴方程ax2+bx+c=3的解为x1=1,x2=2;故②正确;③∵二次函数y=ax2+bx+c的开口向下,对称轴为x=1,(1,3)的对称点是(2,3),∴当x>2时,y<3;故③错误;所以,正确结论的序号为①②故选D.【点睛】本题考查了二次函数的性质,二次函数图象与系数的关系,抛物线与x轴的交点,有一定难度.熟练掌握二次函数图象的性质是解题的关键.6、C【解析】

过D作DH⊥y轴于H,根据矩形和正方形的性质得到AO=BC,DE=EF=BF,∠AOC=∠DEF=∠BFE=∠BCF=90°,根据全等三角形的性质即可得到结论.【详解】过D作DH⊥y轴于H,∵四边形AOCB是矩形,四边形BDEF是正方形,∴AO=BC,DE=EF=BF,∠AOC=∠DEF=∠BFE=∠BCF=90°,∴∠OEF+∠EFO=∠BFC+∠EFO=90°,∴∠OEF=∠BFO,∴△EOF≌△FCB(ASA),∴BC=OF,OE=CF,∴AO=OF,∵E是OA的中点,∴OE=OA=OF=CF,∵点C的坐标为(3,0),∴OC=3,∴OF=OA=2,AE=OE=CF=1,同理△DHE≌△EOF(ASA),∴DH=OE=1,HE=OF=2,∴OH=2,∴点D的坐标为(1,3),故选:C.【点睛】本题考查了正方形的性质,坐标与图形性质,矩形的性质,全等三角形的判定和性质,正确的识别图形是解题的关键.7、D【解析】

直接利用轴对称图形和中心对称图形的概念求解.【详解】解:A、是轴对称图形,但不是中心对称图形,故此选项错误;

B、是轴对称图形,不是中心对称图形,故此选项错误;

C、是轴对称图形,不是中心对称图形,故此选项错误;

D、既是中心对称图形也是轴对称图形,故此选项正确.

故选:D.【点睛】此题主要考查了中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合.8、D【解析】

分别根据同底数幂的乘除运算法则以及幂的乘方和合并同类项法则求出即可.【详解】A选项:m•m2•m3=m6,故此选项错误;

B选项:m2+m2=2m2,故此选项错误;

C选项:(m4)2=m8,故此选项错误;

D选项:(-2m)2÷2m3=,此选项正确.

故选:D.【点睛】考查了同底数幂的乘除运算法则以及幂的乘方和合并同类项法则等知识,熟练应用运算法则是解题关键.9、D【解析】

将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,可得两个阴影部分的图形的长和宽,计算可得答案.【详解】将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,如下图所示:则阴影面积===故选:D【点睛】本题考查算术平方根,解答本题的关键是明确题意,求出大小正方形的边长,利用数形结合的思想解答.10、B【解析】

A.∵从小到大排序为-4,-1,,1,2,2,∴中位数为1,故正确;B.,,故不正确;C.∵众数是2,故正确;D.,故正确;故选B.11、C【解析】如图所示,已知AB=2cm,因为菱形对角线互相平分,所以BO=OD=cm,在Rt△ABO中,,AB=2cm,BO=cm,所以AO=1cm,故菱形的另一条对角线AC长为2AO=2cm,故选C.点睛:本题考查了菱形对角线互相垂直平分的性质,勾股定理在直角三角形中的运用,本题根据勾股定理求AO的长是解题的关键.12、D【解析】

根据一次函数的性质即可求出m的取值范围.【详解】∵一次函数的图象经过第二、三、四象限,∴m-1<0∴m<1.故选:D【点睛】本题考查一次函数,解题的关键是熟练运用一次函数的性质,本题属于基础题型.二、填空题(每题4分,共24分)13、3【解析】

先根据根与系数的关系求出x1+x2和x1•x2的值,再利用完全平方公式对所求代数式变形,然后把x1+x2和x1•x2的值整体代入计算即可.【详解】∵x1,x2是方程x2+x−1=0的两个根,

∴x1+x2=−=−=−1,x1•x2===−1,

∴x12+x22=(x1+x2)2−2x1⋅x2=(−1)2−2×(−1)=1+2=3.

故答案是:3.【点睛】本题考查根与系数的关系,解题的关键是掌握根与系数的关系.14、-1【解析】

根据分式值为0得出分子等于0求出x的值,再根据分母不等于0排除x=1,即可得出答案.【详解】∵分式的值为0∴解得:x=1或x=-1又x-1≠0∴x=-1故答案为-1.【点睛】本题考查的是分式的值为0,属于基础题型,注意分式值为0则分子等于0,但分母不等于0.15、【解析】

根据直角三角形斜边上的中线以及等腰三角形的性质即可求出答案.【详解】解:∵AB=AC,AF⊥BC,∴AF是△ABC的中线,∵D是AB的中点,∴DF是△ABC的中位线,设AB=BC=2x,∴DF=x,∵BE⊥AC,点D是AB的中点,点F是BC的中点,∴DE=AB=x,EF=BC=4,∵△DEF的周长为10,∴x+x+4=10,∴x=3,∴AC=6,∴由勾股定理可知:AF=故答案为:.【点睛】本题考查直角三角形斜边上的中线,解题的关键是熟练运用直角三角形斜边上的中线,等腰三角形的性质以及勾股定理,本题属于中等题型.16、矩形是对角线相等的平行四边形【解析】

把命题的条件和结论互换就得到它的逆命题。【详解】命题”两条对角线相等的平行四边形是矩形“的逆命题是矩形是两条对角线相等的平行四边形,故答案为:矩形是两条对角线相等的平行四边形。【点睛】本题考查命题与逆命题,熟练掌握之间的关系是解题关键.17、(,0)【解析】

交点既在x轴上,又在直线直线y=3x-2上,而在x轴上的点其纵坐标为0,因此令y=0,代入关系式求出x即可.【详解】当y=0时,即3x-2=0,解得:x=,∴直线y=3x-2与x轴的交点坐标为(,0),故答案为:(,0).【点睛】本题考查直线与x轴的交点坐标,实际上就是令y=0,求x即可,数形结合更直观,更容易理解.18、6【解析】

直接将点(0,a)代入直线y=2x+6,即可得出a=6.【详解】解:∵直线y=2x+6经过点(0,a),将其代入解析式∴a=6.【点睛】此题主要考查一次函数解析式的性质,熟练掌握即可得解.三、解答题(共78分)19、(1)y=,y=-x+1;(3)点E的坐标为(0,5)或(0,4);(3)0<x<3或x>13【解析】

(1)把点A的坐标代入反比例函数解析式,求出反比例函数的解析式,把点B的坐标代入已求出的反比例函数解析式,得出n的值,得出点B的坐标,再把A、B的坐标代入直线,求出k、b的值,从而得出一次函数的解析式;

(3)设点E的坐标为(0,m),连接AE,BE,先求出点P的坐标(0,1),得出PE=|m﹣1|,根据S△AEB=S△BEP﹣S△AEP=3,求出m的值,从而得出点E的坐标.(3)根据函数图象比较函数值的大小.【详解】解:(1)把点A(3,6)代入y=,得m=13,则y=.得,解得把点B(n,1)代入y=,得n=13,则点B的坐标为(13,1).由直线y=kx+b过点A(3,6),点B(13,1),则所求一次函数的表达式为y=﹣x+1.(3)如图,直线AB与y轴的交点为P,设点E的坐标为(0,m),连接AE,BE,则点P的坐标为(0,1).∴PE=|m﹣1|.∵S△AEB=S△BEP﹣S△AEP=3,∴×|m﹣1|×(13﹣3)=3.∴|m﹣1|=3.∴m1=5,m3=4.∴点E的坐标为(0,5)或(0,4).(3)根据函数图象可得的解集:或;【点睛】考核知识点:反比例函数和一次函数的综合运用.熟记函数性质是关键.20、(1)证明见解析;(2)菱,理由见解析;(3).【解析】

(1)根据矩形的性质得到AD∥BC,根据平行线的性质得到∠EDO=∠FBO,由全等三角形的判定定理即可得到结论;(2)根据平行四边形的判定定理得到四边形BEDF是平行四边形,由菱形的判定定理即可得到结论;(3)根据勾股定理得到,设BE=DE=x,得到AE=8-x,根据勾股定理列方程得到,根据三角形的面积公式即可得到结论.【详解】解:(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠EDO=∠FBO,∵点O是BD的中点,∴BO=DO,在△BOF与△DOE中,,∴△BOF≌△DOE(ASA),∴OE=OF;(2)四边形BEDF是菱形,理由:∵OE=OF,OB=OD,∴四边形BEDF是平行四边形,∵EF⊥BD,∴平行四边形BEDF是菱形;故答案为菱;(3)∵四边形ABCD是矩形,∴∠A=90°,∵AD=8,BD=10,,设BE=DE=x,∴AE=8﹣x,∵AB2+AE2=BE2,∴62+(8﹣x)2=x2,解得:,∴BE=,∵BO=BD=5,∴OE=,∴△BDE的面积.【点睛】本题考查了矩形性质,平行四边形的判定,菱形的判定和性质,全等三角形的判定与性质,勾股定理等知识;熟练掌握矩形的性质,证明四边形是菱形是解决问题的关键.21、C【解析】

①由四边形ABCD是正方形和折叠性得出∠DAG=∠DFG=45°,∠ADG=∠FDG=45°÷2=22.5°,再由三角形的内角和求出∠FGD=112.5°.故①正确,②④由四边形ABCD是正方形和折叠,判断出四边形AEFG是平行四边形,再由AE=EF,得出四边形AEFG是菱形.利用45°的直角三角形得出GF=OG,BE=EF=GF,得出BE=2OG,故②④正确.③由四边形ABCD是正方形和折叠性,得到△ADG≌△FDG,所以S△AGD=S△FDG≠S△OGD故③错误.【详解】①由四边形ABCD是正方形和折叠性知,∠DAG=∠DFG=45°,∠ADG=∠FDG=45°÷2=22.5°,∴∠FGD=180°﹣∠DFG﹣∠FDG=180°﹣45°﹣22.5°=112.5°,故①正确,②由四边形ABCD是正方形和折叠性得出,∠DAG=∠DFG=45°,∠EAD=∠EFD=90°,AE=EF,∵∠ABF=45°,∴∠ABF=∠DFG,∴AB∥GF,又∵∠BAC=∠BEF=45°,∴EF∥AC,∴四边形AEFG是平行四边形,∴四边形AEFG是菱形.∵在Rt△GFO中,GF=OG,在Rt△BFE中,BE=EF=GF,∴BE=2OG,故②④正确.③由四边形ABCD是正方形和折叠性知,AD=FD,AG=FG,DG=DG,在△ADG和△FDG中,,∴△ADG≌△FDG(SSS),∴S△AGD=S△FDG≠S△OGD故③错误.正确的有①②④,故选C.【点睛】本题主要考查了折叠问题,菱形的判定及正方形的性质,解题的关键是明确图形折叠前后边及角的大小没有变化.22、(1)见解析;(2)见解析;(3)【解析】

(1)根据等角的余角相等证明即可;(2)如图1中,作AN⊥BF于N,DM⊥BF交BF的延长线于M,首先证明△ANB≌△DME,可得AN=DM,然后证明△AFN≌△DFM,求出AF=FD即可;(3)如图2中,作AN⊥BF于N,DM⊥BF交BF的延长线于M,想办法求出FM,EM即可.【详解】(1)证明:∵CB=CE,∴∠CBE=∠CEB,∵∠ABC=∠CED=90°,∴∠DEF+∠CEB=90°,∠ABF+∠CBE=90°,∴∠DEF=∠ABF.(2)证明:如图1中,作AN⊥BF于N,DM⊥BF交BF的延长线于M.∵∠ABN=∠DEM,∠ANB=∠M=90°,AB=DE,∴△ANB≌△DME(AAS),∴AN=DM,∵∠ANF=∠M=90°,∠AFN=∠DFM,AN=DM,∴△AFN≌△DFM(AAS),∴AF=FD,即F为AD的中点;(3)如图2中,作AN⊥BF于N,DM⊥BF交BF的延长线于M.在Rt△ABC中,∵∠ABC=90°,AC=10,AB=8,∴BC=EC==6,∵EC⊥BC,∴∠BCE=∠ACD=90°,∵AC=CD=10,∴AD=10,∴DF=AF=5,∵∠MED=∠CEB=45°,∴EM=MD=4,在Rt△DFM中,FM==3,∴EF=EM-FM=.【点睛】本题考查旋转变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.23、(1)证明见解析(2)AG⊥BE(3)证明见解析【解析】

(1)根据正方形的性质得DA=DC,∠ADB=∠CDB=45°,则可根据“SAS”证明△ADG≌△CDG,所以∠DAG=∠DCG;(2)根据正方形的性质得AB=DC,∠BAD=∠CDA=90°,根据“SAS”证明△ABE≌△DCF,则∠ABE=∠DCF,由于∠DAG=∠DCG,所以∠DAG=∠ABE,然后利用∠DAG+∠BAG=90°得到∠ABE+∠BAG=90°,于是可判断AG⊥BE;(3)如答图1所示,过点O作OM⊥BE于点M,ON⊥AG于点N,证明△AON≌△BOM,可得四边形OMHN为正方形,因此HO平分∠BHG结论成立.【详解】(1)证明:∵四边形ABCD为正方形,∴DA=DC,∠ADB=∠CDB=45°,在△ADG和△CDG中,,∴△ADG≌△CDG(SAS),∴∠DAG=∠DCG;(2)解:AG⊥BE.理由如下:∵四边形ABCD为正方形,∴AB=DC,∠BAD=∠CDA=90°,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠ABE=∠DCF,∵∠DAG=∠DCG,∴∠DAG=∠ABE,∵∠DAG+∠BAG=90°,∴∠ABE+∠BAG=90°,∴∠AHB=90°,∴AG⊥BE;(3)解:由(2)可知AG⊥BE.如答图1所示,过点O作OM⊥BE于点M,ON⊥AG于点N,则四边形OMHN为矩形.∴∠MON=90°,又∵OA⊥OB,∴∠AON=∠BOM.∵∠AON+∠OAN=90°,∠BOM+∠OBM=90°,∴∠OAN=∠OBM.在△AON与△BOM中,,∴△AON≌△BOM(AAS).∴OM=ON,∴矩形OMHN为正方形,∴HO平分∠BHG.【点睛】此题是四边形综合题,主要考查了正方形的性质,矩形的判定和性质,全等三角形的判定和性质,角平分线的意义,垂直的判定,利用全等三角形的判断方法判断三角形是解本题的关键.24、(1)2017

年到

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论