版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.矩形的对角线一定()A.互相垂直平分且相等 B.互相平分且相等C.互相垂直且相等 D.互相垂直平分2.若,则下列各不等式不一定成立的是()A. B. C. D.3.下列任务中,适宜采用普查方式的是()A.调查某地的空气质量 B.了解中学生每天的睡眠时间C.调查某电视剧在本地区的收视率 D.了解某一天本校因病缺课的学生数4.一次函数的图象如图所示,当时,x的取值范围是A. B. C. D.5.美是一种感觉,本应没有什么客观的标准,但在自然界里,物体形状的比例却提供了在的称与协调上的一种美感的参考,在数学上,这个比例称为黄金分割.在人体由脚底至肚脐的长度与身高的比例上,肚脐是理想的黄金分割点,也就是说,若此比值越接近就越给别人一种美的感觉.某女士身高为,脚底至肚脐的长度与身高的比为为了追求美,地想利用高跟鞋达到这一效果,那么她选的高跟鞋的高度约为()A. B. C. D.6.下列等式一定成立的是()A. B. C. D.7.已知△ABC的三边分别是a、b、c,下列条件中不能判断△ABC为直角三角形的是()A.a2+b2=c2 B.∠A+∠B=90°C.a=3,b=4,c=5 D.∠A:∠B:∠C=3:4:58.若=,则的值是()A. B. C. D.9.甲,乙两个样本的容量相同,甲样本的方差为0.102,乙样本的方差是0.06,那么()A.甲的波动比乙的波动大 B.乙的波动比甲的波动大C.甲,乙的波动大小一样 D.甲,乙的波动大小无法确定10.平南县某小区5月份随机抽取了15户家庭,对其用电情况进行了统计,统计情况如下(单位:度):78,62,95,108,87,103,99,74,87,105,88,76,76,94,79.则用电量在71~80的家庭有()A.4户 B.5户 C.6户 D.7户二、填空题(每小题3分,共24分)11.如图所示:分别以直角三角形三边为边向外作三个正方形,其面积分别用、、表示,若,,则的长为__________.12.如图,在中,分别以点、为圆心,大于的长为半径作弧,两弧交于点、,作直线交于点,连接,若,,则与之间的函数关系式是___________.13.函数是y关于x的正比例函数,则______.14.在函数中,自变量的取值范围是________.15.已知y=(k﹣1)x+k2﹣1是正比例函数,则k=_____.16.如图,等腰直角三角形ABC的底边长为6,AB⊥BC;等腰直角三角形CDE的腰长为2,CD⊥ED;连接AE,F为AE中点,连接FB,G为FB上一动点,则GA的最小值为____.17.如图,经过平移后得到,下列说法错误的是()A. B.C. D.18.已知函数y=(k-1)x|k|是正比例函数,则k=________三、解答题(共66分)19.(10分)如图,在Rt△ABC中,∠B=90∘,BC=53,∠C=30∘.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动,设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.(3)当t为何值时,△DEF为直角三角形?请说明理由.20.(6分)如图,在正方形ABCD中,点M在CD边上,点N在正方形ABCD外部,且满足∠CMN=90°,CM=MN.连接AN,CN,取AN的中点E,连接BE,AC,交于F点.(1)①依题意补全图形;②求证:BE⊥AC.(2)设AB=1,若点M沿着线段CD从点C运动到点D,则在该运动过程中,线段EN所扫过的面积为(直接写出答案).21.(6分)某公司经营甲、乙两种商品,两种商品的进价和售价情况如下表:进价(万元/件)售价(万元/件)甲1214.5乙810两种商品的进价和售价始终保持不变.现准备购进甲、乙两种商品共20件.设购进甲种商品件,两种商品全部售出可获得利润为万元.(1)与的函数关系式为__________________;(2)若购进两种商品所用的资金不多于200万元,则该公司最多购进多少合甲种商品?(3)在(2)的条件下,请你帮该公司设计一种进货方案,使得该公司获得最大利润,并求出最大利润是多少?22.(8分)两个全等的直角三角形重叠放在直线l上,如图①所示,AB=6cm,AC=10cm,∠ABC=90°,将Rt△ABC在直线l上左右平移(如图②).(1)求证:四边形ACFD是平行四边形.(2)怎样移动Rt△ABC,使得四边形ACFD的面积等于△ABC的面积的一半?(3)将Rt△ABC向左平移4cm,求四边形DHCF的面积.23.(8分)如图,△ABC中,∠ACB=90°,D.E分别是BC、BA的中点,联结DE,F在DE延长线上,且AF=AE.(1)求证:四边形ACEF是平行四边形;(2)若四边形ACEF是菱形,求∠B的度数.24.(8分)如图,在中,延长至点,使,连接,作于点,交的延长线于点,且.(1)求证:;(2)如果,求的度数.25.(10分)为加快城市群的建设与发展,在A、B两城市间新建一条城际铁路,建成后,铁路运行里程由现在的210km缩短至180km,平均时速要比现行的平均时速快200km,运行时间仅是现行时间的,求建成后的城际铁路在A、B两地的运行时间?26.(10分)如图,要在长、宽分别为50米、40米的矩形草坪内建一个正方形的观赏亭.为方便行人,分别从东,南,西,北四个方向修四条宽度相同的矩形小路与亭子相连,若小路的宽是正方形观赏亭边长的,小路与观赏亭的面积之和占草坪面积的,求小路的宽.
参考答案一、选择题(每小题3分,共30分)1、B【解析】
根据矩形的性质对矩形的对角线进行判断即可.【详解】解:矩形的对角线一定互相平分且相等,故选:B.【点睛】此题考查矩形的性质,关键是根据矩形的对角线一定互相平分且相等解答.2、D【解析】
根据不等式的性质逐个判断即可.【详解】A、∵,
∴,故本选项不符合题意;
B、∵,
∴,故本选项不符合题意;
C、∵,
∴,故本选项不符合题意;
D、∵,
∴,故本选项符合题意;
故选:D.【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.3、D【解析】
调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】A.调查某地的空气质量,由于范围广,应当使用抽样调查,故本选项错误;B.了解中学生每天的睡眠时间,由于人数多,不易全面掌握所有的人,故应当采用抽样调查;C.调查某电视剧在本地区的收视率,人数较多,不便测量,应当采用抽样调查,故本选项错误;D.了解某一天本校因病缺课的学生数,人数少,耗时短,应当采用全面调查的方式,故本选项正确。故选D.【点睛】此题考查全面调查与抽样调查,解题关键在于掌握调查方法.4、A【解析】
解:由图像可知,当时,x的取值范围是.故选A.5、C【解析】
根据已知条件算出下半身身高,然后设选的高跟鞋的高度为xcm,根据比值是0.618列出方程,解方程即可【详解】根据已知条件得下半身长是160×0.6=96cm设选的高跟鞋的高度为xcm,有解得x≈7.5经检验x≈7.5是原方程的解故选C【点睛】本题考查分式方程的应用,能够读懂题意列出方程是本题关键6、A【解析】
根据分式的基本性质逐一判断即可.【详解】解:约分正确,故A正确,符号处理错误,故B错误,根据分式的基本性质明显错误,故C错误,根据分式的基本性质也错误,故D错误.故选:A.【点睛】本题考查的是分式的基本性质对约分的要求,掌握分式的基本性质是解题关键.7、D【解析】分析:利用直角三角形的定义和勾股定理的逆定理逐项判断即可.详解:A.a2=b2+c2,符合勾股定理的逆定理,能够判定△ABC为直角三角形,不符合题意;B.∠A+∠B=∠C,此时∠C是直角,能够判定△ABC是直角三角形,不符合题意;C.52=32+42,符合勾股定理的逆定理,能够判定△ABC为直角三角形,不符合题意;D.∠A:∠B:∠C=3:4:5,那么∠A=45°、∠B=60°、∠C=75°,△ABC不是直角三角形;故选D.点睛:此题主要考查了直角三角形的判定方法,只有三角形的三边长构成勾股数或三个内角中有一个是直角的情况下,才能判定三角形是直角三角形.8、A【解析】
先设a=2k,则b=5k,然后将它们分别代入,计算即可求出其值即可.【详解】解:∵=,设a=2k,则b=5k,
∴=.
故选A.【点睛】本题考查了比例的基本性质,比较简单,关键是巧设未知数,可使计算简便.9、A【解析】
根据方差的定义,方差越小数据越稳定,故可选出正确选项.【详解】解:根据方差的意义,甲样本的方差大于乙样本的方差,故甲的波动比乙的波动大.故选A.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.10、B【解析】
根据题意找出用电量在71~80的家庭即可.【详解】解:用电量在71~80的家庭有:78,74,76,76,79共5户.
故选:B.【点睛】本题主要考查了数据的收集与整理,理清题意是解题的关键.二、填空题(每小题3分,共24分)11、1.【解析】
先设Rt△ABC的三边分别为a、b、c,再分别用a、b、c表示S1、S2、S3的值,由勾股定理即可得出S2的值.【详解】解:设Rt△ABC的三边分别为a、b、c,∴S1=a2=25,S2=b2,S3=c2=9,∵△ABC是直角三角形,∴c2+b2=a2,即S3+S2=S1,∴S2=S1-S3=25-9=16,∴BC=1,故答案为:1.【点睛】本题考查的是勾股定理的应用及正方形的面积公式,熟知勾股定理是解答此题的关键.12、【解析】
由题意可判定PQ是AD的垂直平分线,根据线段垂直平分线的性质即得ED=EA,进一步可得∠A=∠ADE,再根据平行线的性质和平行四边形对角相等的性质即得结果.【详解】解:由题意可知,PQ是AD的垂直平分线,∴ED=EA,∴∠A=∠ADE,∵四边形ABCD是平行四边形,∴∠A=∠C=x°,AB∥CD,∴∠A+∠ADC=180°,即,∴.故答案为.【点睛】本题考查了对尺规作线段垂直平分线的理解和线段垂直平分线的性质以及平行四边形的性质,解题的关键是由作图语言正确判断PQ是AD的垂直平分线.13、1【解析】试题分析:因为函数是y关于x的正比例函数,所以,解得m=1.考点:正比例函数14、x≠1【解析】
根据分式有意义的条件,即可求解.【详解】∵在函数中,x-1≠0,∴x≠1.故答案是:x≠1.【点睛】本题主要考查函数的自变量的取值范围,掌握分式的分母不等于零,是解题的关键.15、-1【解析】【分析】根据正比例函数的定义可知k-1≠0,常数项k2-1=0,由此即可求得答案.【详解】∵y=(k-1)x+k2-1是正比例函数,∴k-1≠0,k2-1=0,解得k≠1,k=±1,∴k=-1,故答案为-1.【点睛】本题考查了正比例函数的定义,熟知正比例函数y=kx中一次项系数中不为0,常数项等于0是解题的关键.16、3.【解析】
运用等腰直角过三角形角的性质,逐步推导出AC⊥EC,当AG⊥BF时AG最小,最后运用平行线等分线段定理,即可求解.【详解】解:∵等腰直角三角形ABC,等腰直角三角形CDE∴∠ECD=45°,∠ACB=45°即AC⊥EC,且CE∥BF当AG⊥BF,时AG最小,所以由∵AF=AE∴AG=CG=AC=3故答案为3【点睛】本题考查了等腰直角三角形三角形的性质和平行线等分线段定理,其中灵活应用三角形中位线定理是解答本题的关键.17、D【解析】
根据平移的性质,对应点的连线互相平行且相等,平移变换只改变图形的位置不改变图形的形状与大小对各小题分析判断即可得解.【详解】A、AB∥DE,正确;B、,正确;C、AD=BE,正确;D、,故错误,故选D.【点睛】本题主要考查了平移的性质,是基础题,熟记性质是解题的关键.18、-1【解析】试题解析:∵根据正比例函数的定义,可得:k-1≠0,|k|=1,∴k=-1.三、解答题(共66分)19、(1)证明见解析;(2)能,理由见解析;(3)t=52秒或4秒时,【解析】
(1)在△DFC中,∠DFC=90∘,∠C=30∘,根据30°角直角三角形的性质及已知条件即可证得结论;(2)先证得四边形AEFD为平行四边形,使▱AEFD为菱形则需要满足的条件为AE=AD,由此即可解答;(3)①∠EDF=90∘时,四边形EBFD为矩形.在Rt△AED中求可得AD=2AE,由此即可解答;②∠DEF=90∘时,由(2)知【详解】(1)证明:在△DFC中,∠DFC=90∘,∠C=30∴DF=t.又∵AE=t,∴AE=DF.(2)解:能.理由如下:∵AB⊥BC,DF⊥BC,∴AE//DF.又AE=DF,∴四边形AEFD为平行四边形.∵AB=BC⋅tan∴AC=2AB=10.∴AD=AC-DC=10-2t.若使▱AEFD为菱形,则需AE=AD,即t=10-2t,t=10即当t=103时,四边形(3)解:①∠EDF=90∘时,四边形在Rt△AED中,∠ADE=∠C=30∴AD=2AE.即10-2t=2t,t=5②∠DEF=90∘时,由(2)四边形AEFD为平行四边形知∴∠ADE=∠DEF=90∵∠A=90∴AD=AE⋅cos即10-2t=12t③∠EFD=90综上所述,当t=52秒或4秒时,【点睛】本题考查了菱形的性质,考查了菱形是平行四边形,考查了菱形的判定定理,以及菱形与矩形之间的联系.难度适宜,计算繁琐.20、(1)①见解析;②见解析;(2)【解析】
(1)①依照题意补全图形即可;②连接CE,由正方形以及等腰直角三角形的性质可得出∠ACD=∠MCN=45°,从而得出∠ACN=90°,再根据直角三角形的性质以及点E为AN的中点即可得出AE=CE,由此即可得出B、E在线段AC的垂直平分线上,由此即可证得BE⊥AC;
(2)找出EN所扫过的图形为四边形DFCN.根据正方形以及等腰直角三角形的性质可得出BD∥CN,由此得出四边形DFCN为梯形,再由AB=1,可算出线段CF、DF、CN的长度,利用梯形的面积公式即可得出结论.【详解】(1)①依题意补全图形,如图1所示.
②证明:连接CE,如图2所示.
∵四边形ABCD是正方形,
∴∠BCD=90°,AB=BC,
∴∠ACB=∠ACD=∠BCD=45°,
∵∠CMN=90°,CM=MN,
∴∠MCN=45°,
∴∠ACN=∠ACD+∠MCN=90°.
∵在Rt△ACN中,点E是AN中点,
∴AE=CE=AN.
∵AE=CE,AB=CB,
∴点B,E在AC的垂直平分线上,
∴BE垂直平分AC,
∴BE⊥AC.(2)在点M沿着线段CD从点C运动到点D的过程中,线段EN所扫过的图形为四边形DFCN.
∵∠BDC=45°,∠DCN=45°,
∴BD∥CN,
∴四边形DFCN为梯形.
∵AB=1,
∴CF=DF=BD=,CN=,
∴S梯形DFCN=(DF+CN)•CF=(+)×=.
故答案为:.【点睛】此题考查正方形的性质,等腰直角三角形的性质,平行线的性质以及梯形的面积公式,解题的关键是:(1)根据垂直平分线上点的性质证出垂直;(2)用AD表示出EF、BF的长度;(3)找出EN所扫过的图形.根据题意画出图形,利用数形结合解决问题是关键.21、(1)w=0.5x+40;(2)10;(3)该公司购进甲种商品10件,乙种商品10件时,该公司获得最大利润,最大利润是45万元【解析】
(1)设该公司购进甲种商品x件,则乙种商品(20﹣x)件,根据题意可得等量关系:公司获得的利润w=甲种商品的利润+乙种商品的利润,根据等量关系可得函数关系式;(2)根据资金不多于20万元列出不等式组;(3)根据一次函数的性质:k>0时,w随x的增大而增大可得答案.【详解】解:(1)设该公司购进甲种商品x件,则乙种商品(20﹣x)件,根据题意得:w=(14.5﹣12)x+(10﹣8)(20﹣x),整理得:w=0.5x+40;故答案为:w=0.5x+40;(2)由题意得:12x+8(20﹣x)≤200,解得x≤10,故该公司最多购进10台甲种商品;(3)∵对于函数w=0.5x+40,w随x的增大而增大,∴当x=10时,能获得最大利润,最大利润为:w=0.5×10+40=45(万元),故该公司购进甲种商品10件,乙种商品10件时,该公司获得最大利润,最大利润是45万元.【点睛】此题主要考查了一次函数的应用,关键是正确理解题意,找出等量关系,列出函数关系式.22、(1)见解析;(2)将Rt△ABC向左(或右)平移2cm,可使四边形ACFD的面积等于△ABC的面积的一半.(3)18(cm2)【解析】
(1)四边形ACFD为Rt△ABC平移形成的,即可求得四边形ACFD是平行四边形;(2)先根据勾股定理得BC==8(cm),△ABC的面积=24cm2,要满足四边形ACFD的面积等于△ABC的面积的一半,即6×CF=24×,解得CF=2cm,从而求解;(3)将Rt△ABC向右平移4cm,则EH为Rt△ABC的中位线,即可求得△ADH和△CEH的面积,即可解题.【详解】(1)证明:∵四边形ACFD是由Rt△ABC平移形成的,∴AD∥CF,AC∥DF.∴四边形ACFD为平行四边形.(2)解:由题易得BC==8(cm),△ABC的面积=24cm2.要使得四边形ACFD的面积等于△ABC的面积的一半,即6×CF=24×,解得CF=2cm,∴将Rt△ABC向左(或右)平移2cm,可使四边形ACFD的面积等于△ABC的面积的一半.(3)解:将Rt△ABC向左平移4cm,则BE=AD=4cm.又∵BC=8cm,∴CE=4cm=AD.由(1)知四边形ACFD是平行四边形,∴AD∥BF.∴∠HAD=∠HCE.又∵∠DHA=∠EHC,∴△DHA≌△EHC(AAS).∴DH=HE=DE=AB=3cm.∴S△HEC=HE·EC=6cm2.∵△ABC≌△DEF,∴S△ABC=SDEF.由(2)知S△ABC=24cm2,∴S△DEF=24cm2.∴四边形DHCF的面积为S△DEF-S△HEC=24-6=18(cm2).【点睛】本题考查平行四边形的判定、三角形面积和平行四边形面积的计算,还考查了全等三角形的判定、中位线定理,考查了勾股定理在直角三角形中的运用,本题中求△CEH的面积是解题的关键.23、(1)证明见解析;(2)30°.【解析】
(1)由直角三角形斜边上的中线等于斜边的一半,得到CE=AE=BE,从而得到AF=CE,再由等腰三角形三线合一,得到∠1=∠2,从而有∠F=∠3,得到∠2=∠F,故CE∥AF,然后利用一组对边平行且相等的四边形是菱形证明;(2)由菱形的性质,得到AC=CE,求出AC=CE=AE,从而得到△AEC是等边三角形,得出∠CAE=60°,然后根据直角三角形两锐角互余解答.【详解】解:(1)∵∠ACB=90°,E是BA的中点,∴CE=AE=BE,∵AF=AE,∴AF=CE,在△BEC中,∵BE=CE且D是BC的中点,∴ED是等腰△BEC底边上的中线,∴ED也是等腰△BEC的顶角平分线,∴∠1=∠2,∵AF=AE,∴∠F=∠3,∵∠1=∠3,∴∠2=∠F,∴CE∥AF,又∵CE=AF,∴四边形ACEF是平行四边形;(2)∵
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年智慧城市建设战略合作合同
- 草莓精准营销策略研究报告
- 草莓熟了课程设计
- 草药标本制作课程设计
- 2024年度广告投放合同广告内容与投放渠道详述
- 二零二四年度农产品买卖合同:新鲜蔬菜购销协议
- 二零二四年度广告设计与制作发布合同
- 二零二四年度供应链管理服务合同详细条款
- 2024年度餐饮商铺租赁合同纠纷调解协议
- 2024年度玻璃屋顶设计与安装合同
- 研发物料管理制度
- 2024年中国木材链市场调查研究报告
- 民航飞行员技能大赛理论考试题库600题(含答案)
- 供应链管理师(三级)认证备考试题及答案
- 自然科学基金项目申报书(模板)
- 高中数学必修一《双曲线及其标准方程》课件
- 全国职业院校技能大赛高职组(法律实务赛项)考试题及答案
- 社群健康助理员职业技能鉴定考试题库(含答案)
- 2024年全国《劳动教育》基础知识考试题库与答案
- 2024年心理健康知识竞赛题库及答案(单选共90题)
- DB13-T 5800-2023 复温竹罐治疗外科术后患者低体温技术规范
评论
0/150
提交评论