




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.对于数据3,3,1,3,6,3,10,3,6,3,1.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中正确的结论有()A.1个 B.1个 C.3个 D.4个2.菱形的面积为2,其对角线分别为x、y,则y与x的图象大致().A. B.C. D.3.某班名男生参加中考体育模拟测试,跑步项目成绩如下表:成绩(分)人数则该班男生成绩的中位数是()A. B. C. D.4.如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为()A.3 B.4 C.5 D.65.如图,P是矩形ABCD的AD边上一个动点,矩形的两条边AB、BC长分别是6和8,则点P到矩形的两条对角线距离之和PE+PF是()A.4.8 B.5 C.6 D.7.26.如图,一次函数y=kx+b的图象与y轴交于点(0,1),则关于x的不等式kx+b>1的解集是()A.x>0 B.x<0 C.x>1 D.x<17.甲、乙两人在相同的条件下,各射靶10次,经过计算:甲、乙射击成绩的平均数都是1环,甲的方差是1.2,乙的方差是1.1.下列说法中不一定正确的是()A.甲、乙射中的总环数相同 B.甲的成绩稳定 C.乙的成绩波动较大 D.甲、乙的众数相同8.下列四组线段中,可以构成直角三角形的是()A.1、、 B.2、3、4 C.1、2、3 D.4、5、69.不列调查方式中,最合适的是()A.调查某品牌电脑的使用寿命,采用普查的方式B.调查游客对某国家5A级景区的满意程度情况,采用抽样调查的方式C.调查“神舟七号”飞船的零部件质量情况,采用抽样调查的方式D.调查苏州地区初中学生的睡眠时间,采用普查的方式10.一名射击运动员连续打靶10次,命中的环数如图所示,这位运动员命中环数的众数与中位数分别为()A.7与7 B.7与7.5 C.8与7.5 D.8与711.如图,矩形ABCD中,点E、F分别是AB、CD的中点,连接DE和BF,分别取DE、BF的中点M、N,连接AM、CN、MN,若AB=,BC=,则图中阴影部分的面积为()A.4 B.2 C.2 D.212.如图,直线经过点,则关于的不等式的解集是()A. B. C. D.二、填空题(每题4分,共24分)13.直线是由直线向上平移______个单位长度得到的一条直线.直线是由直线向右平移______个单位长度得到的一条直线.14.如图,直线与轴、轴分别交于两点,过点作轴与双曲线交于点,过作轴于.若梯形的面积为4,则的值为_____.AABCDOxy15.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是.16.如图,菱形ABCD的周长为20,对角线AC与BC相交于点O,AC=8,则BD=________.17.如图,在菱形ABCD中,∠=∠EAF=,∠BAE=,则∠CEF=________.18.如图,已知一次函数y=kx+b经过A(2,0),B(0,﹣1),当y>0时,则x的取值范围是_____.三、解答题(共78分)19.(8分)解不等式组并将解集在数轴上表示出来.20.(8分)如图,在菱形中,.请根据下列条件,仅用无刻度的直尺过顶点作菱形的边上的高。(1)在图1中,点为中点;(2)在图2中,点为中点.21.(8分)已知:在平行四边形ABCD中,AM=CN.求证:四边形MBND是平行四边形.22.(10分)(1)已知y﹣2与x成正比例,且x=2时,y=﹣1.①求y与x之间的函数关系式;②当y<3时,求x的取值范围.(2)已知经过点(﹣2,﹣2)的直线l1:y1=mx+n与直线l2:y2=﹣2x+1相交于点M(1,p)①关于x,y的二元一次方程组的解为;②求直线l1的表达式.23.(10分)甲、乙两家文化用品商场平时以同样价格出售相同的商品.六一期间两家商场都让利酬宾,其中甲商场所有商品一律按8折出售,乙商场对一次购物中超过200元后的价格部分打7折.(1)分别写出两家商场购物金额(元)与商品原价(元)的函数解析式;(2)在如图所示的直角坐标系中画出(1)中函数的图象;(3)六一期间如何选择这两家商场购物更省钱?24.(10分)如图,在矩形中,、相交于点,过点作的平行线交的延长线于点.(1)求证:.(2)过点作于点,并延长交于点,连接.若,,求四边形的周长.25.(12分)直线分别与轴交于两点,过点的直线交轴负半轴于,且.求点坐标.求直线的解析式.直线的解析式为,直线交于点,交于点,求证:.26.我市为加强学生的安全意识,组织了全市学生参加安全知识竞赛,为了解此次知识竞赛成绩的情况,随机抽取了部分参赛学生的成绩,整理并制作出如下的不完整的统计表和统计图,如图所示,请根据图表信息解答以下问题。(1)一共抽取了___个参赛学生的成绩;表中a=___;(2)补全频数分布直方图;(3)计算扇形统计图中“B”对应的圆心角度数;(4)某校共2000人,安全意识不强的学生(指成绩在70分以下)估计有多少人?
参考答案一、选择题(每题4分,共48分)1、A【解析】
将这组数据从小到大排列为:1,1,2,2,2,2,2,2,6,6,10,共11个数,所以第6个数据是中位数,即中位数为2.数据2的个数为6,所以众数为2.平均数为,由此可知(1)正确,(1)、(2)、(4)均错误,故选A.2、C【解析】
先根据菱形的面积公式,得出x、y的函数关系,再根据x的取值范围选出答案.【详解】∵菱形的面积S=∴,即y=其中,x>0故选:C【点睛】本题考查菱形面积公式的应用,注意在求解出x、y的关系后,还需要判断x的取值范围.3、C【解析】
将一组数据按照大小顺序排列,位于最中间的那个数或两个数的平均数就是该组数据的中位数,据此结合题意进一步加以计算即可.【详解】∵该班男生一共有18名,∴中位数为按照大小顺序排序后第9与第10名的成绩的平均数,∴该班男生成绩的中位数为:,故选:C.【点睛】本题主要考查了中位数的定义,熟练掌握相关概念是解题关键.4、A【解析】
根据已知条件易证△DEO≌△BFO,可得△DEO和△BFO的面积相等,由此可知阴影部分的面积等于Rt△ADC的面积,继而求得阴影部分面积.【详解】∵四边形ABCD是矩形,AB=2,BC=3,∴AD∥BC,AD=BC=3,AB=CD=2,OB=OD,∴∠DEO=∠BFO,在△DEO和△FBO中,,∴△DEO≌△BFO,即△DEO和△BFO的面积相等,∴阴影部分的面积等于Rt△ADC的面积,即阴影部分的面积是:故选A..【点睛】本题考查了矩形的性质及全等三角形的判定与性质,证明△DEO≌△BFO,得到阴影部分的面积等于Rt△ADC的面积是解决问题的关键.5、A【解析】【分析】连接OP,由矩形的两条边AB、BC的长分别为6和8,可求得OA=OD=5,△AOD的面积,然后由S△AOD=S△AOP+S△DOP=OA•PE+OD•PF即可求得答案.【详解】连接OP,∵矩形的两条边AB、BC的长分别为6和8,∴S矩形ABCD=AB•BC=48,OA=OC,OB=OD,AC=BD=10,∴OA=OD=5,∴S△ACD=S矩形ABCD=24,∴S△AOD=S△ACD=12,∵S△AOD=S△AOP+S△DOP=OA•PE+OD•PF=×5×PE+×5×PF=52(PE+PF)=12,解得:PE+PF=4.8,故选A.【点睛】本题考查了矩形的性质以及三角形面积问题,掌握辅助线的作法以及掌握整体数学思想的运用是解题的关键.6、B【解析】
直接根据函数的图象与y轴的交点为(0,1)进行解答即可:【详解】解:由一次函数的图象可知,此函数是减函数,∵一次函数y=kx+b的图象与y轴交于点(0,1),∴当x<0时,关于x的不等式kx+b>1.故选B.7、D【解析】解:A、根据平均数的定义,正确;B、根据方差的定义,正确;C、根据方差的定义,正确,D、一组数据中出现次数最多的数值叫众数.题目没有具体数据,无法确定众数,错误.故选D8、A【解析】
求出两小边的平方和、最长边的平方,看看是否相等即可.【详解】A、12+()2=()2
∴以1、、为边组成的三角形是直角三角形,故本选项正确;
B、22+3242
∴以2、3、4为边组成的三角形不是直角三角形,故本选项错误;
C、
12+2232
∴以1、2、3为边组成的三角形不是直角三角形,故本选项错误;
D、
42+5262
∴以4、5、6为边组成的三角形不是直角三角形,故本选项错误;
故选A..【点睛】本题考查了勾股定理的逆定理应用,掌握勾股定理逆定理的内容就解答本题的关键.9、B【解析】
本题考查的是普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】A.调查某品牌电脑的使用寿命,考查会给被调查对象带来损伤破坏,应选择抽样调查的方式;B.调查游客对某国家5A级景区的满意程度情况,采用抽样调查的方式,节省人力、物力、财力,是合适的;C.要保证“神舟七号”飞船成功发射,精确度要求高、事关重大,往往选用普查;D.调查苏州地区初中学生的睡眠时间,费大量的人力物力是得不尝失的,采取抽样调查即可;故选B【点睛】此题考查全面调查与抽样调查,解题关键在于对与必要性结合起来10、A【解析】
根据众数的定义找出出现次数最多的数;根据中位数的定义求出最中间两个数的平均数即可.【详解】解:根据统计图可得:7出现了4次,出现的次数最多,则众数是7;∵共有10个数,∴中位数是第5和6个数的平均数,∴中位数是(7+7)÷2=7;故选:A.【点睛】此题考查了众数和中位数,用到的知识点是众数和中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),众数是一组数据中出现次数最多的数,注意众数不止一个.11、B【解析】
根据矩形的中心对称性判定阴影部分的面积等于空白部分的面积,从而得到阴影部分的面积等于矩形的面积的一半,再根据矩形的面积公式列式计算即可得解.【详解】∵点E、F分别是AB、CD的中点,M、N分别为DE、BF的中点,∴矩形绕中心旋转180阴影部分恰好能够与空白部分重合,∴阴影部分的面积等于空白部分的面积,∴阴影部分的面积=×矩形的面积,∵AB=,BC=∴阴影部分的面积=××=2.故选B.【点睛】本题考查了矩形的性质,主要利用了矩形的中心对称性,判断出阴影部分的面积等于矩形的面积的一半是解题的关键.12、B【解析】
先利用待定系数法求出一次函数解析式,再求出一次函数与x轴的交点坐标,然后找出一次函数图象在x轴上方所对应的自变量的范围即可.【详解】解:把(0,3)代入得b=3,所以一次函数解析式为,当y=0时,即,解得x=1,所以一次函数与x轴的交点坐标为(1,0),由函数图象可得,当x<1时,y>0,所以关于x的不等式的解集是x<1.故选:B.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标的取值范围.二、填空题(每题4分,共24分)13、2,1.【解析】
根据平移中解析式的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减,可得出答案.【详解】解:直线是由直线向上平移2个单位长度得到的一条直线.由直线向右平移1个单位长度得到.故答案是:2;1.【点睛】本题考查一次函数图象与几何变换,掌握平移中解析式的变化规律是:左加右减;上加下减是解题的关键.14、-2【解析】由题意可知,OB=2,OA=2,所以三角形OAB的面积等于2,四边形BCDO的面积等于4-2=2,点C在双曲线上,所以k=-215、n2+2n【解析】试题分析:第1个图形是2×3﹣3,第2个图形是3×4﹣4,第3个图形是4×5﹣5,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是(n+1)(n+2)﹣(n+2)=n2+2n.解:第n个图形需要黑色棋子的个数是n2+2n.故答案为:n2+2n.16、1【解析】分析:根据菱形的四条边都相等可得AB=5,根据菱形的两条对角线互相垂直且平分可得AC⊥BD,AO=AC=4,BO=DO,再利用勾股定理计算出BO长,进而可得答案.详解:∵四边形ABCD是菱形,∴AC⊥BD,AO=,AC=4,BO=DO,AD=AB=DC=BC,∵菱形ABCD的周长为20,∴AB=5,∴BO==3,∴DO=3,∴DB=1,故答案为:1.点睛:此题主要考查了菱形的性质,关键是掌握菱形的性质
①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.17、20°【解析】
首先证明△ABE≌△ACF,然后推出AE=AF,证明△AEF是等边三角形,得∠AEF=60°,最后求出∠CEF的度数.【详解】解:连接AC,在菱形ABCD中,AB=CB,∵=60°,∴∠BAC=60°,△ABC是等边三角形,∵∠EAF=60°,∴∠BAC-∠EAC=∠EAF-∠EAC,即:∠BAE=∠CAF,在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),∴AE=AF,又∠EAF=∠D=60°,则△AEF是等边三角形,∴∠AEF=60°,又∠AEC=∠B+∠BAE=80°,则∠CEF=80°-60°=20°.故答案为:20°.【点睛】此题主要考查菱形的性质和等边三角形的判定以及三角形的内角和定理,有一定的难度,解答本题的关键是正确作出辅助线,然后熟练掌握菱形的性质.18、x>1【解析】
利用待定系数法可得直线AB的解析式为y=x−1,依据当y>0时,x−1>0,即可得到x的取值范围.【详解】解:由A(1,0),B(0,﹣1),可得直线AB的解析式为y=x﹣1,∴当y>0时,x﹣1>0,解得x>1,故答案为:x>1.【点睛】本题主要考查了一次函数与不等式之间的联系,直线上任意一点的坐标都满足函数关系式y=kx+b,解题关键是求出直线解析式.三、解答题(共78分)19、.【解析】试题分析:首先分别求出不等式组中两个不等式的解,然后在数轴上表示出来,得出不等式组的解.试题解析:由①,得x>-3,由②,得x≤1,解集在数轴上表示为:所以原不等式的解集为:-3<x≤1.考点:解不等式组20、(1)见解析;(2)见解析.【解析】
(1)在菱形中,,可知△ACD是等边三角形,过顶点作菱形的边上的高,即找到AD的边中点即可.根据菱形是中心对称图形,连接AC、BD得到对称中心O,再作直线交于,连接,即可.(2)在菱形中,,可知△ACD是等边三角形,过顶点作菱形的边上的高,即找到AD的边中点即可.根据菱形是轴对称图形,连接,交于点,作直线交于,线段即为所求.【详解】解:(1)如图1中,连接,交于点,作直线交于,连接,线段即为所求.(2)如图2中,连接,交于点,作直线交于,线段即为所求.【点睛】本题考查菱形的性质,三角形的高的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21、证明见解析.【解析】
可通过证明DM∥BN,DM=BN来说明四边形是平行四边形,也可通过DM=BN,BM=DN来说明四边形是平行四边形.【详解】(法一)∵四边形ABCD是平行四边形,∴AD∥CB,AD=CB.∵AM=CN,∴AD﹣AM=CB﹣CN,即DM=BN.又∵DM∥BN,∴四边形MBND是平行四边形.(法二)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,在△AMN和△CND中,又∵,∴△AMN≌△CND,∴BM=DN.∵AM=CN,∴AD﹣AM=CB﹣CN,即DM=BN.又∵BM=DN,∴四边形MBND是平行四边形.点睛:本题考查了平行四边形的性质和判定,题目难度不大.22、(1)①y=﹣4x+2;②x>-;(2)①;②y1=2x+2.【解析】
(1)根据正比例函数的定义即可求解,再列出不等式即可求解;(2)根据一次函数与二元一次方程组的关系即可求解,把两点代入即可求解.【详解】解:(1)①∵y﹣2与x成正比例,设y﹣2=kx,把x=2,y=﹣1代入可得;﹣1﹣2=2k,解得:k=﹣4,∴y=﹣4x+2,②当y<3时,则﹣4x+2<3,解得:x>-;(2)①把点M(1,p)代入y2=﹣2x+1=4,∴关于x、y的二元一次方程组组的解即为直线l1:y1=mx+n与直线l2:y2=﹣2x+1相交的交点M(1,4)的坐标.故答案为:;②b把点M(1,4)和点(﹣2,﹣2)代入直线l1:y1=mx+n,可得:,解得:,所以直线l1的解析式为:y1=2x+2.【点睛】此题主要考查二元一次方程组与一次函数的性质,解题的关键是熟知他们的关系.23、(1)甲商场:y=0.8x,乙商场:y=x(0≤x≤200),y=0.7x+60(x>200);(2)详见解析;(3)详见解析.【解析】
(1)根据题中描述的数量关系分别写出甲商场和乙商场中,y与x的函数关系即可(其中乙商场需分0≤x≤200和x>200两段分别讨论);(2)根据(1)中所得函数关系式按要求画出函数图象即可;(3)根据(1)中所得函数关系式分0.8x<0.7x+60、0.8x=0.7x+60、0.8x>0.7x+60三种情况进行解答即可得到相应的结论.【详解】解:(1)甲商场:y=0.8x,乙商场:y=x(0≤x≤200),y=0.7(x﹣200)+200=0.7x+60,即y=0.7x+60(x>200);(2)如图所示;(3)①由0.8x<0.7x+60解得:x<600;②由0.8x=0.7x+60解得:x=600;③由0.8x>0.7x+60解得x>600,∴当x=600时,甲、乙商场购物花钱相等;当x<600时,在甲商场购物更省钱;当x>600时,在乙商场购物更省钱.【点睛】本题考查了一次函数的应用,解决第(1)小题时,需注意乙商场中:y与x的函数关系式需分0≤x≤200和x>200两段分别讨论;解第(2)小题时,需分三种情况分别讨论,再作出相应的结论.24、(1)证明见解析;(2).【解析】
(1)根据两组对边分别平行且的四边形是平行四边形判断出四边形BEAD是平行四边形,再根据平行四边形对边相等和矩形对边相等即可得出结论;(2)根据矩形的对角线相等且互相平分及直角三角形斜边上的中线等于斜边的一半可得OB=OC=OG,利用勾股定理求出BC,CO的长.证明BF为△CEG的中位线,再由三角形中位线定理可得EG=2BF,最后根据四边形的周长公式列式计算即可得解.【详解】(1)∵AE∥DB,AD∥EB,∴四边形BEAD是平行四边形,∴BE=DA.∵四边形ABCD是矩形,∴BC=AD,∴BE=BC;(2)∵四边形ABCD是矩形,∴OA=OB=OCAC.∵AE∥DB,CF⊥BO,∴CG⊥AE,∴GO为Rt△CGA斜边的中线,∴GOAC=OB,∴BO+OG=BD.∵CF=3,BF=1,∴BE=BC=.设CO=x,则FO=BO-BF=x-1.在Rt△CFO中,∵,∴,解得:x=7.5,∴BO+OG=BD=2x=2.∵OG=CO,OF⊥CG,∴FG=CF=3.∵CB=BE,∴BF为△CEG的中位线,∴EG=2BF=3,∴四边形BOGE的周长=BO+OG+EG+EB=2+3+=.【点睛】本题考查了平行四边形的判定与性质,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 注射相关感染预防与控制
- 2-10逻辑函数的化简-公式法1
- 福建省龙岩市一级校联盟2023-2024学年高一下学期4月期中联考数学试题【含答案】
- AIGC应用基础课件
- 医院制度管理制度流程图
- 四川省德阳地区2024-2025学年下学期初三模拟卷(一)生物试题含解析
- 西南石油大学《拉丁美洲文学史》2023-2024学年第一学期期末试卷
- 江苏省盐城市郭猛实验学校2024-2025学年初三适应性月考(六)数学试题含解析
- 山东省青岛市胶州实验市级名校2024-2025学年第二学期期末初三联考数学试题含解析
- 锦州市凌河区2025届数学三下期末学业水平测试模拟试题含解析
- 湖南新高考教学教研联盟暨长郡二十校联盟2025届高三年级第二次联考英语试题及答案
- 国家开放大学《心理学》形考任务1-4参考答案
- 三查四定表完整版本
- 异常子宫出血的护理查房
- Q∕GDW 10799.6-2018 国家电网有限公司电力安全工作规程 第6部分:光伏电站部分
- 方格网计算步骤及方法
- 课题评分表(共1页)
- 六年级趣味数学(课堂PPT)
- 询价单(模板)
- 关于我县二次供水调研报告
- 肿瘤形态学编码(ICD-10字典库)
评论
0/150
提交评论