![2023年武威市重点中学八年级数学第二学期期末监测模拟试题含解析_第1页](http://file4.renrendoc.com/view/71787a399c5c83a02eb9c4adae967460/71787a399c5c83a02eb9c4adae9674601.gif)
![2023年武威市重点中学八年级数学第二学期期末监测模拟试题含解析_第2页](http://file4.renrendoc.com/view/71787a399c5c83a02eb9c4adae967460/71787a399c5c83a02eb9c4adae9674602.gif)
![2023年武威市重点中学八年级数学第二学期期末监测模拟试题含解析_第3页](http://file4.renrendoc.com/view/71787a399c5c83a02eb9c4adae967460/71787a399c5c83a02eb9c4adae9674603.gif)
![2023年武威市重点中学八年级数学第二学期期末监测模拟试题含解析_第4页](http://file4.renrendoc.com/view/71787a399c5c83a02eb9c4adae967460/71787a399c5c83a02eb9c4adae9674604.gif)
![2023年武威市重点中学八年级数学第二学期期末监测模拟试题含解析_第5页](http://file4.renrendoc.com/view/71787a399c5c83a02eb9c4adae967460/71787a399c5c83a02eb9c4adae9674605.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.若=x﹣5,则x的取值范围是()A.x<5 B.x≤5 C.x≥5 D.x>52.如图,甲、丙两地相距500km,一列快车从甲地驶往丙地,途中经过乙地;一列慢车从乙地驶往丙地,两车同时出发,同向而行,折线ABCD表示两车之间的距离y(km)与慢车行驶的时间为x(h)之间的函数关系.根据图中提供的信息,下列说法不正确的是()A.甲、乙两地之间的距离为200km B.快车从甲地驶到丙地共用了2.5hC.快车速度是慢车速度的1.5倍 D.快车到达丙地时,慢车距丙地还有50km3.已知点(x1,y1)、(x2,y2)、(x3,y3)在反比例函数的图像上,当x1<x2<0<x3时,y1、y2、y3的大小关系()A.y1<y3<y2 B.y2<y1<y3 C.y3<y1<y2 D.y3<y2<y14.如图所示,在矩形中,,,矩形内部有一动点满足,则点到,两点的距离之和的最小值为().A. B. C. D.5.已知y-3与x成正比例,且x=2时,y=7,则y与x的函数关系式为()A.y=2x+3 B.y=2x-3 C.y-3=2x+3 D.y=3x-36.的算术平方根是()A. B.﹣ C. D.±7.计算的结果是()A.2 B. C. D.-28.关于5-1A.它是无理数B.它是方程x2+x-1=0的一个根C.0.5<5-12D.不存在实数,使x2=59.如图,在▱ABCD中,AB=3,BC=5,AC的垂直平分线交AD于E,则△CDE的周长是()A.8 B.6 C.9 D.1010.下列分解因式正确的是()A. B.C. D.二、填空题(每小题3分,共24分)11.已知a2-2ab+b2=6,则a-b=_________.12.如图,某小区有一块直角三角形绿地,量得直角边AC=4m,BC=3m,考虑到这块绿地周围还有足够多的空余部分,于是打算将这块绿地扩充成等腰三角形,且扩充部分是以AC为一条直角边的直角三角形,则扩充的方案共有_____种.13.在菱形中,其中一个内角为,且周长为,则较长对角线长为__________.14.如图,在平行四边形ABCD中,对角线AC⊥BD,AC=10,BD=24,则AD=____________15.约分:=_________.16.如图,A、B两点被池塘隔开,在AB外选一点C,连接AC、BC,取AC、BC的中点D、E,量出DE=20米,则AB的长为___________米.17.如图,函数y=3x和y=ax+4的图象相交于点A(1,3),则不等式3x<ax+4的解集为____________.18.在函数y=中,自变量x的取值范围是____.三、解答题(共66分)19.(10分)(1)计算:(2)先化简,再求值:已知,试求的值.20.(6分)如图,已知边长为6的菱形ABCD中,∠ABC=60°,点E,F分别为AB,AD边上的动点,满足,连接EF交AC于点G,CE、CF分别交BD于点M,N,给出下列结论:①△CEF是等边三角形;②∠DFC=∠EGC;③若BE=3,则BM=MN=DN;④;⑤△ECF面积的最小值为.其中所有正确结论的序号是______21.(6分)甲、乙两组数据单位:如下表:甲11969147771010乙34581288131316(1)根据以上数据填写下表;
平均数众数中位数方差甲9乙9(2)根据以上数据可以判断哪一组数据比较稳定.22.(8分)我们定义:如图1、图2、图3,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′,当α+β=180°时,我们称△AB'C′是△ABC的“旋补三角形”,△AB′C′边B'C′上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.图1、图2、图3中的△AB′C′均是△ABC的“旋补三角形”.(1)①如图2,当△ABC为等边三角形时,“旋补中线”AD与BC的数量关系为:AD=BC;②如图3,当∠BAC=90°,BC=8时,则“旋补中线”AD长为.(2)在图1中,当△ABC为任意三角形时,猜想“旋补中线”AD与BC的数量关系,并给予证明.23.(8分)先化简,再求值:÷(1+),其中x=1.24.(8分)如图,已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O,连接AF、CE.(1)求证:△AOE≌△COF;(2)求证:四边形AFCE为菱形;(3)求菱形AFCE的周长.25.(10分)某车行经销的型自行车去年月份销售总额为万元,今年由于改造升级每辆车售价比去年增加元,今年月份与去年同期相比,销售数量相同,销售总额增加.(1)求今年型车每辆售价多少元?(2)该车行计划月份用不超过万元的资金新进一批型车和型车共辆,应如何进货才能使这批车售完后获利最多?今年、两种型号车的进价和售价如下表:型车型车进价(元/辆)售价(元/辆)今年售价26.(10分)在数学课上,老师出了这样一道题:甲、乙两地相距1400km,乘高铁列车从甲地到乙地比乘特快列车少用9h,已知高铁列车的平均行驶速度是特快列车的2.8倍。求高铁列车从甲地到乙地的时间.老师要求同学先用列表方式分析再解答.下面是两个小组分析时所列的表格:小组甲:设特快列车的平均速度为xkm/h.小组乙:高铁列车从甲地到乙地的时间为yh(1)根据题意,填写表格中空缺的量;(2)结合表格,选择一种方法进行解答.
参考答案一、选择题(每小题3分,共30分)1、C【解析】
因为=-a(a≤0),由此性质求得答案即可.【详解】∵=x-1,∴1-x≤0∴x≥1.故选C.【点睛】此题考查二次根式的性质:=a(a≥0),=-a(a≤0).2、C【解析】
根据两车同时出发,同向而行,所以点A即为甲、乙两地的距离;图中点B为y=0,即快慢两车的距离为0,所以B表示快慢两车相遇的时间;由图像可知慢车走300km,用了3小时,可求出慢车的速度,进而求出快车的速度;点C的横坐标表示快车走到丙地用的时间,根据快车与慢车的速度,可求出点C的坐标【详解】A、由图像分析得,点A即为甲、乙两地的距离,即甲、乙两地之间的距离为选项A是正确BC、由图像可知慢车走300km,用了3小时,则慢车的速度为100km/h,因为1h快车比慢车多走100km,故快车速度为200km/h,所以快车从甲地到丙地的时间=500200=2.5h,故选项B是正确的,快车速度是慢车速度的两倍,故选项C是错误的D、快车从甲地驶到丙地共用了2.5h,即点C的横坐标2.5,则慢车还剩0.5h才能到丙地,距离=0.5100=50km,故快车到达丙地时,慢车距丙地还有50km,选项D是正确的故正确答案为C【点睛】此题主要根据实际问题考查了一次函数的应用,解决此题的关键是根据函数图像,读懂题意,联系实际的变化,明确横轴和纵轴表示的意义3、C【解析】
在反比例函数的图象在二四象限,根据x1<x2<0<x3,可以确定点(x1,y1)、(x2,y2)、(x3,y3)所在象限,根据反比例函数的图象和性质,可以确定y1、y2、y3的大小关系.【详解】∵反比例函数的图象在二、四象限,在每个象限内y随x的增大而增大,
又∵x1<x2<0<x3,∴点,和,在第二象限、而,在第四象限,
于是有:0<<,而<0,
因此,<<,
故选:C.【点睛】本题考查了反比例函数的性质,反比例函数图象上点的坐标特点,先根据题意判断出函数图象在二、四象限是解答此题的关键.4、D【解析】
首先由,得出动点P在与AB平行且与AB的距离是2的直线l上,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.【详解】解:设△ABP中AB边上的高是h.∵,∴AB•h=AB•AD,∴h=AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=4,AE=2+2=4,∴BE=,即PA+PB的最小值为.故选D.【点睛】本题考查了轴对称−最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.5、A【解析】
用待定系数法可求出函数关系式.【详解】y-1与x成正比例,即:y=kx+1,且当x=2时y=7,则得到:k=2,则y与x的函数关系式是:y=2x+1.故选:A.【点睛】此题考查了待定系数法求一次函数解析式,利用正比例函数的特点以及已知条件求出k的值,写出解析式.6、C【解析】
直接利用算术平方根的定义得出答案.【详解】的算术平方根是:.故选C.【点睛】此题主要考查了算术平方根,正确把握定义是解题关键.7、A【解析】
根据分式的混合运算法则进行计算即可得出正确选项。【详解】解:=2故选:A【点睛】本题考查了分式的四则混合运算,熟练掌握运算法则是解本题的关键.8、D【解析】
根据开方开不尽的数是无理数,可对A作出判断;利用一元二次方程的公式法求出方程x2+x-1=0的解,可对B作出判断,分别求出5-12-0.5和5-12【详解】解:A、5-12是无理数,故B、x2+x-1=0b2-4ac=1-4×1×(-1)=5∴x=-1±∴5-12是方程x2+x-1=0的一个根,故C、∵5∴5-12∵5∴5-12∴0.5<5-12<1,故D、∵5∴5-12∴存在实数x,使x2=5-12,故故答案为:D【点睛】本题主要考查无理数估算,解一元二次方程及平方根的性质,综合性较强,牢记基础知识是解题关键.9、A【解析】
由AC的垂直平分线交AD于E,易证得AE=CE,又由四边形ABCD是平行四边形,即可求得AD与DC的长,继而求得答案【详解】∵AC的垂直平分线交AD于E,∴AE=CE,∵四边形ABCD是平行四边形,∴CD=AB=3,AD=BC=5,∴△CDE的周长是:DC+DE+CE=DC+DE+AE=DC+AD=3+5=8,故选A.【点睛】此题考查线段垂直平分线的性质,平行四边形的性质,解题关键在于得到AE=CE10、C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A.,故A选项错误;B.,故B选项错误;C.,故C选项正确;D.=(x-2)2,故D选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.二、填空题(每小题3分,共24分)11、【解析】由题意得(a-b)2="6,"则=12、1【解析】
由于扩充所得的等腰三角形腰和底不确定,若设扩充所得的三角形是△ABD,则应分为①AB=AD,②AB=BD,③AD=BD,1种情况进行讨论.【详解】解:如图所示:故答案是:1.【点睛】本题考查了等腰三角形的性质以及勾股定理的应用,关键是正确进行分类讨论.13、【解析】
由菱形的性质可得,,,由直角三角形的性质可得,由勾股定理可求的长,即可得的长.【详解】解:如图所示:菱形的周长为,,,,,,,..故答案为:.【点睛】本题考查了菱形的性质,直角三角形角所对的直角边等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.14、13【解析】
根据平行四边形对角线互相平分先求出AO、OD的长,再根据AC⊥BD,在Rt△AOD中利用勾股定理进行求解即可.【详解】∵四边形ABCD是平行四边形,∴OA=AC=×10=5,OD=BD=×24=12,又∵AC⊥BD,∴∠AOD=90°,∴AD==13,故答案为:13.【点睛】本题考查了平行四边形的性质,勾股定理,熟练掌握平行四边形的性质是解题的关键.15、.【解析】
由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.【详解】解:原式=,
故答案为:.【点睛】本题考查约分,正确找出公因式是解题的关键.16、40【解析】【分析】推出DE是三角形ABC的中位线,即可求AB.【详解】因为,D、E是AC、BC的中点,所以,DE是三角形ABC的中位线,所以,AB=2DE=40米故答案为:40【点睛】本题考核知识点:三角形中位线.解题关键点:理解三角形中位线的性质.17、【解析】
由题意结合图象可以知道,当x=1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式的解集.【详解】解:两个条直线的交点坐标为A(1,3),当x<1时,直线y=ax+4在直线y=3x的上方,当x>1时,直线y=ax+4在直线y=3x的下方,故不等式3x<ax+4即直线y=ax+4在直线y=3x的上方的解集为x<1.故答案为:x<1.【点睛】本题主要考查正比例函数、一次函数和一元一次不等式的知识点,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.18、x≥-2且x≠1【解析】
根据二次根式被开方数大于等于1,分式分母不等于1列式计算即可得解.【详解】解:由题意得,x+2≥1且2x≠1,
解得:x≥-2且x≠1.
故答案为:x≥-2且x≠1.【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为1;(3)当函数表达式是二次根式时,被开方数非负.三、解答题(共66分)19、(1)(2);【解析】
(1)根据二次根式的性质即可化简运算;(2)先化简二次根式,再代入a,b即可求解.【详解】(1)解:;(2)解:当时,原式.【点睛】此题主要考查二次根式的运算,解题的关键是熟知二次根式的性质进行化简.20、①②③⑤【解析】
由“SAS”可证△BEC≌△AFC,可得CF=CE,∠BCE=∠ACF,可证△EFC是等边三角形,由三角形内角和定理可证∠DFC=∠EGC;由等边三角形的性质和菱形的性质可求MN=DN=BM=;由勾股定理即可求解EF2=BE2+DF2不成立;由等边三角形的性质可得△ECF面积的EC2,则当EC⊥AB时,△ECF的最小值为.【详解】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD=6,∵AC=BC,∴AB=BC=CD=AD=AC,∴△ABC,△ACD是等边三角形,∴∠ABC=∠BAC=∠ACB=∠DAC=60°,∵AC=BC,∠ABC=∠DAC,AF=BE,∴△BEC≌△AFC(SAS)∴CF=CE,∠BCE=∠ACF,∴∠ECF=∠BCA=60°,∴△EFC是等边三角形,故①正确;∵∠ECF=∠ACD=60°,∴∠ECG=∠FCD,∵∠FEC=∠ADC=60°,∴∠DFC=∠EGC,故②正确;若BE=3,菱形ABCD的边长为6,∴点E为AB中点,点F为AD中点,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO,∠ABO=∠ABC=30°,∴AO=AB=3,BO=AO=,∴BD=,∵△ABC是等边三角形,BE=AE=3,∴CE⊥AB,且∠ABO=30°,∴BE=EM=3,BM=2EM,∴BM=,同理可得DN=,∴MN=BD−BM−DN=,∴BM=MN=DN,故③正确;∵△BEC≌△AFC,∴AF=BE,同理△ACE≌△DCF,∴AE=DF,∵∠BAD≠90°,∴EF2=AE2+AF2不成立,∴EF2=BE2+DF2不成立,故④错误,∵△ECF是等边三角形,∴△ECF面积的EC2,∴当EC⊥AB时,△ECF面积有最小值,此时,EC=,△ECF面积的最小值为,故⑤正确;故答案为:①②③⑤.【点睛】本题是四边形综合题,考查菱形的性质,全等三角形的判定和性质,等边三角形的判定和性质,勾股定理等知识,熟练掌握性质定理是解题的关键.21、(1)答案见解析;(2)甲组数据较稳定【解析】
(1)根据图表按照平均数,众数,中位数的定义一一找出来填表即可.(2)此问先比较平均数,如果平均数相同再比较方差.【详解】(1)(2)∵甲、乙两组数据的平均数相同,且<,∴甲组数据较稳定.【点睛】此题考查数据的收集和处理,包含内容有众数,中位数,平均数及方差.22、(1)①;②1;(2)AD=BC.【解析】
(1)①首先证明△ADB'是含有30°的直角三角形,可得ADAB'即可解决问题;②首先证明△BAC≌△B'AC',根据直角三角形斜边中线定理即可解决问题;(2)结论:ADBC.如图1中,延长AD到M,使得AD=DM,连接B'M,C'M,首先证明四边形AC'MB'是平行四边形,再证明△BAC≌△AB'M,即可解决问题.【详解】(1)①如图2中,∵△ABC是等边三角形,∴AB=BC=AC=AB'=AC'.∵DB'=DC',∴AD⊥B'C'.∵∠BAC=60°,∠BAC+∠B'AC'=180°,∴∠B'AC'=120°,∴∠B'=∠C'=30°,∴ADAB'BC.故答案为.②如图3中,∵∠BAC=90°,∠BAC+∠B'AC'=180°,∴∠B'AC'=∠BAC=90°.∵AB=AB',AC=AC',∴△BAC≌△B'AC',∴BC=B'C'.∵B'D=DC',∴ADB'C'BC=1.故答案为1.(2)结论:ADBC.理由:如图1中,延长AD到M,使得AD=DM,连接B'M,C'M.∵B'D=DC',AD=DM,∴四边形AC'MB'是平行四边形,∴AC'=B'M=AC.∵∠BAC+∠B'AC'=180°,∠B'AC'+∠AB'M=180°,∴∠BAC=∠MB'A.∵AB=AB',∴△BAC≌△AB'M,∴BC=AM,∴ADBC.【点睛】本题是四边形综合题,主要考查了全等三角形的判定和性质、平行四边形的判定和性质、直角三角形30度角性质、等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.23、.【解析】
先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可【详解】原式===,当x=1时,原式=.【点睛】此题考查分式的化简求值,解题关键在于利用完全平方公式和提取公因式法进行化简24、(1)详见解析;(2)详见解析;(3)20cm.【解析】
(1)求出AO=OC,∠AOE=∠COF,根据平行的性质得出∠EAO=∠FCO,根据ASA即可得出两三角形全等;(2)根据全等得出OE=OF,推出四边形是平行四边形,再根据EF⊥AC即可推出四边形是菱形;(3)设AF=xcm,则CF=AF=xcm,BF=(8-x)cm,在Rt△ABF中,由勾股定理得出方程42+(8-x)2=x2,求出x的值,进而得到菱形AFCE的周长.【详解】(1)证明:∵EF是AC的垂直平分线,∴AO=OC,∠AOE=∠COF=90°,∵四边形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO.在△AOE和△COF中,,∴△AOE≌△COF(ASA);(2)证明:∵△AOE≌△COF,∴OE=OF,∵OA=OC,∴四边形AFCE为平行四边形,又∵EF⊥AC,∴平行四边形AFCE为菱形;(3)解:设AF=xcm,则CF=AF=xcm,BF=(8﹣x)cm,在Rt△ABF中,由勾股定理得:AB2+BF2=AF2,即42+(8﹣x)2=x2,解得x=1.所以菱形AFCE的周长为1×4=20cm.【点睛】本题考查了菱形的判定与性质,全等三角形的判定与性质,线段垂直平分线的性质,矩形的性质等知识.根据勾股定理并建立方程是解题的关键.25、(1)今年A型车每辆售价为1000元;(2)当购进A型车1辆、购进B型车20辆时,才能使这批车售完后获利最多.【解析】
(1)设今年A型车每辆售价为x元,则去年A型车每辆售价为(x−200)元,根据数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大学生创新创业教程(慕课版 双色版 第3版) 课件 第5章 创业机会发掘与团队组建
- 2025至2031年中国无纸记录调节行业投资前景及策略咨询研究报告
- 2025至2031年中国布艺相框行业投资前景及策略咨询研究报告
- 2025至2031年中国下肢假肢行业投资前景及策略咨询研究报告
- 2025至2030年中国锈板岩数据监测研究报告
- 《SIPA机电子控制》课件
- 《高财综合练习题》课件
- 《中国艺术》课件
- 《中考语文总复习》课件
- 《水稻纹枯病》课件
- DL∕T 1100.1-2018 电力系统的时间同步系统 第1部分:技术规范
- (正式版)SH∕T 3553-2024 石油化工汽轮机施工及验收规范
- 仓库目视化管理
- NB-T47044-2014电站阀门-标准
- 发动机吊挂支架加工工艺及夹具设计 - 副本
- 部编版小学《道德与法治》教材中生命教育的渗透研究
- 顶管施工施工总体部署中建
- 病媒生物防治操作规程
- 门急诊病历书写内容及要求
- 2022年陕西西安亮丽电力集团有限责任公司招聘考试试题及答案
- 一人出资一人出力合伙协议范本完整版
评论
0/150
提交评论