2023年重庆市万州区第二高级中学数学八下期末学业质量监测模拟试题含解析_第1页
2023年重庆市万州区第二高级中学数学八下期末学业质量监测模拟试题含解析_第2页
2023年重庆市万州区第二高级中学数学八下期末学业质量监测模拟试题含解析_第3页
2023年重庆市万州区第二高级中学数学八下期末学业质量监测模拟试题含解析_第4页
2023年重庆市万州区第二高级中学数学八下期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.某校八班名同学在分钟投篮测试中的成绩如下:,,,,,(单位:个),则这组数据的中位数、众数分别是()A., B., C., D.,2.等边三角形的边长为2,则它的面积为A. B. C. D.13.下列二次根式;5;;;;.其中,是最简二次根式的有()A.2个 B.3个 C.4个 D.5个4.如图,在中,,,垂足为,点是边的中点,,,则()A.8 B.7.5 C.7 D.65.如图,将个全等的阴影小正方形摆放得到边长为的正方形,中间小正方形的各边的中点恰好为另外个小正方形的一个顶点,小正方形的边长为(、为正整数),则的值为()A. B. C. D.6.下列图形均是一些科技创新公司标志图,其中是中心对称图形的是()A. B. C. D.7.下列各式由左到右的变形中,属于因式分解的是()A. B.C. D.8.如图,▱ABCD的对角线AC、BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=BC,连接OE,下列结论:①∠CAD=30°;②S▱ABCD=AB•AC;③OB=AB;④OE=BC,成立的个数有()A.1个 B.2个 C.3个 D.4个9.如图,四边形ABCD的对角线AC和BD交于点O,则下列不能判断四边形ABCD是平行四边形的条件是()A.OA=OC,AD∥BCB.∠ABC=∠ADC,AD∥BCC.AB=DC,AD=BCD.∠ABD=∠ADB,∠BAO=∠DCO10.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8 B.6 C.4 D.2二、填空题(每小题3分,共24分)11.若二次函数y=mx2-(2m-1)x+m的图像顶点在y轴上,则m=.12.若关于y的一元二次方程y2﹣4y+k+3=﹣2y+4有实根,则k的取值范围是_____.13.一组数据的平均数是则这组数据的方差为__________.14.一个不透明的布袋中放有大小、质地都相同四个红球和五个白球,小敏第一次从布袋中摸出一个红球后放回布袋中,接看第二次从布袋中摸球,那么小敏第二次还是摸出红球的可能性为_____.15.为参加2018年“宜宾市初中毕业生升学体育考试”,小聪同学每天进行立定跳远练习,并记录下其中7天的最好成绩(单位:m)分别为:2.21,2.12,2.1,2.39,2.1,2.40,2.1.这组数据的中位数和众数分别是_____.16.如图,在▱ABCD中,AE⊥BC,垂足为E,如果AB=5,AE=4,BC=8,有下列结论:①DE=4;②S△AED=S四边形ABCD;③DE平分∠ADC;④∠AED=∠ADC.其中正确结论的序号是_____(把所有正确结论的序号都填在横线上)17.有一块田地的形状和尺寸如图,则它的面积为_________.18.若关于若关于x的分式方程2x-ax-1三、解答题(共66分)19.(10分)如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线.过点有作AG∥DB交CB的延长线于点G.(1)求证:△ADE≌△CBF;(2)若∠G=90°,求证:四边形DEBF是菱形.20.(6分)已知关于x的一元二次方程总有两个不相等的实数根.(1)求m的取值范围;(2)若此方程的两根均为正整数,求正整数m的值.21.(6分)如图,函数y=x的图象与函数y=(x>0)的图象相交于点P(2,m).(1)求m,k的值;(2)直线y=4与函数y=x的图象相交于点A,与函数y=(x>0)的图象相交于点B,求线段AB长.22.(8分)化简求值:1(+1)(-1)-(1-1),其中=1.23.(8分)如图,证明定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.已知:点D、E分别是△ABC的边AB、AC的中点.求证:DE∥BC,DE=BC.24.(8分)已知点P(1,m)、Q(n,1)在反比例函数y=的图象上,直线y=kx+b经过点P、Q,且与x轴、y轴的交点分别为A、B两点.(1)求k、b的值;(2)O为坐标原点,C在直线y=kx+b上且AB=AC,点D在坐标平面上,顺次联结点O、B、C、D的四边形OBCD满足:BC∥OD,BO=CD,求满足条件的D点坐标.25.(10分)如图,在中,点、分别是、的中点,平分,交于点,交于点.(1)求证:四边形是菱形;(2)若,,求四边形的周长.26.(10分)某中学为了了解八年级学生的业余爱好,抽查了部分学生,并制如下表格和条形统计图:频数频率体育250.25美术30a音乐b0.35其他100.1请根据图完成下面题目:(1)抽查人数为_____人,a=_____.(2)请补全条形统计图;(3)若该校八年级有800人,请你估算该校八年级业余爱好音乐的学生约有多少人?

参考答案一、选择题(每小题3分,共30分)1、D【解析】

根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】解:把数据从小到大的顺序排列为:2,1,1,8,10;在这一组数据中1是出现次数最多的,故众数是1.处于中间位置的数是1,那么由中位数的定义可知,这组数据的中位数是1.故选:D.【点睛】此题考查中位数与众数的意义,掌握基本概念是解决问题的关键2、A【解析】

过等边三角形一条边做高,所以底边被分成了相等的两半,用勾股定理求出高等于,再用三角形面积公式可得:2×=.【详解】过等边三角形一条边做高,所以底边被分成了相等的两半,根据勾股定理可得:高等于,由三角形面积公式可得:2×=.故选A.【点睛】本题主要考查了等边三角形的性质及勾股定理的应用,解决本题的关键熟练掌握等边三角形的性质和勾股定理.3、B【解析】

根据最简二次根式的定义即可判断.【详解】,,,、、是最简二次根式.故选:.【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型.4、B【解析】

根据直角三角形的性质得到AE=BE=CE=AB=5,根据勾股定理得到CD==3,根据三角形的面积公式即可得到结论.【详解】解:∵在△ABC中,∠ACB=90°,C点E是边AB的中点,

∴AE=BE=CE=AB=5,

∵CD⊥AB,DE=4,

∴CD==3,

∴S△AEC=S△BEC=×BE•CD=×5×3=7.5,

故选:B.【点睛】本题考查了直角三角形斜边上的中线,能求出AE=CE是解此题的关键,注意:直角三角形斜边上的中线等于斜边的一半5、B【解析】

通过小正方形的边长表示出大正方形的边长,再利用a、b为正整数的条件分析求解.【详解】解:由题意可知,∴∵a、b都是正整数∴=0,4a-2=2b∴a=4,b=7∴a+b=11故选:B.【点睛】本题考查了正方形的性质以及有理数、无理数的性质,表示出大正方形的边长利用有理数、无理数的性质求出a、b是关键.6、A【解析】

根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析.【详解】A、是中心对称图形,故此选项正确;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;故选A.【点睛】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.7、C【解析】

根据因式分解的定义,直接判断是否是因式分解即可.【详解】解:A.,属于整式乘法,单项式乘多项式,故此选项不符合题意;B.,等式左右两边都有整式加减的形式,故此选项不符合题意;C.,用提公因式法将多项式转化成整式乘法的形式,属于因式分解,故此选项正确;D.,等式左右两边都有整式加减的形式,故此选项不符合题意;故选:C【点睛】本题主要考查整式的因式分解的意义,熟记因式分解的意义是解决此题的关键,还要注意,必须是整式.8、C【解析】试题分析:由四边形ABCD是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据AE平分∠BAD,得到∠BAE=∠EAD=60°推出△ABE是等边三角形,由于AB=BC,得到AE=BC,得到△ABC是直角三角形,于是得到∠CAD=30°,故①正确;由于AC⊥AB,得到S▱ABCD=AB•AC,故②正确,根据AB=BC,OB=BD,且BD>BC,得到AB<OB,故③错误;根据三角形的中位线定理得到OE=AB,于是得到OE=BC,故④正确.解:∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵AE平分∠BAD,∴∠BAE=∠EAD=60°∴△ABE是等边三角形,∴AE=AB=BE,∵AB=BC,∴AE=BC,∴∠BAC=90°,∴∠CAD=30°,故①正确;∵AC⊥AB,∴S▱ABCD=AB•AC,故②正确,∵AB=BC,OB=BD,且BD>BC,∴AB<OB,故③错误;∵CE=BE,CO=OA,∴OE=AB,∴OE=BC,故④正确.故选C.9、D【解析】

平行四边形的性质有①两组对边分别相等的四边形是平行四边形,②两组对边分别平行的四边形是平行四边形③两组对角分别相等的四边形是平行四边形④对角线互相平分的四边形是平行四边形,⑤有一组对边平行且相等的四边形是平行四边形,根据以上内容判断即可.【详解】A、∵AD∥BC,∴∠ADB=∠CBD,在△BOC和△DOA中∠ADO=∴△BOC≌△DOA(AAS),∴BO=DO,∴四边形ABCD是平行四边形,正确,故本选项错误;B、∵∠ABC=∠ADC,AD∥BC,∴∠ADC+∠DCB=180°,∴∠ABC+∠BCD=180°,∴AB∥DC,∴四边形ABCD是平行四边形,正确,故本选项错误;C、∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,正确,故本选项错误;D、由∠ABD=∠ADB,∠BAO=∠DCO,无法得出四边形ABCD是平行四边形,错误,故本选项正确;故选D.【点睛】本题考查了对平行四边形和等腰梯形的判定的应用,注意:平行四边形的性质有:①两组对边分别相等的四边形是平行四边形,②两组对边分别平行的四边形是平行四边形③两组对角分别相等的四边形是平行四边形④对角线互相平分的四边形是平行四边形,⑤有一组对边平行且相等的四边形是平行四边形.10、C【解析】过点P作PE⊥BC于E,

∵AB∥CD,PA⊥AB,

∴PD⊥CD,

∵BP和CP分别平分∠ABC和∠DCB,

∴PA=PE,PD=PE,

∴PE=PA=PD,

∵PA+PD=AD=8,

∴PA=PD=1,

∴PE=1.

故选C.二、填空题(每小题3分,共24分)11、1【解析】试题分析:由二次函数y=mx2-(2m-1)x+m的图像顶点在y轴上知,该二次函数的对称轴是直线x=0,根据二次函数对称轴的公式x=-b-2m-1=0考点:二次函数对称轴点评:本题属于简单的公式应用题,相对来说比较简单,但是仍然要求学生对相应的公式牢记并理解,注意公式中各字母表示的含义。12、【解析】

首先把方程化为一般形式,再根据方程有实根可得△=,再代入a、b、c的值再解不等式即可.【详解】解:y2﹣4y+k+3=﹣2y+4,化为一般式得:,再根据方程有实根可得:△=,则,解得:;∴则k的取值范围是:.故答案为:.【点睛】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.13、8【解析】

根据平均数的公式计算出x后,再运用方差的公式即可解出本题.【详解】x=6×5−2−6−10−8=4,S=[(2−6)+(6−6)+(4−6)+(10−6)+(8−6)]=×40=8,故答案为:8.【点睛】此题考查算术平均数,方差,解题关键在于掌握运算法则14、.【解析】

小敏第一次从布袋中摸出一个红球的概率为,第二次从布袋中摸出一个红球的概率为,据此可得两次摸出的球都是红球的概率.【详解】∵小敏第一次从布袋中摸出一个红球的概率为,第二次从布袋中摸出一个红球的概率为,∴两次摸出的球都是红球的概率为:×=.故答案为:.【点睛】本题主要考查了概率的计算,用到的知识点为:概率=所求情况数与总情况数之比.15、2.40,2.1.【解析】∵把7天的成绩从小到大排列为:2.12,2.21,2.39,2.40,2.1,2.1,2.1.∴它们的中位数为2.40,众数为2.1.故答案为2.40,2.1.点睛:本题考查了中位数和众数的求法,如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数.一组数据中出现次数最多的数是这组数据的众数.16、①②③【解析】

利用平行四边形的性质结合勾股定理以及三角形面积求法分别分析得出答案.【详解】解:①∵在▱ABCD中,AE⊥BC,垂足为E,AE=4,BC=8,∴AD=8,∠EAD=90°,∴DE==,故此选项正确;②∵S△AED=AE•ADS四边形ABCD=AE×AD,∴S△AED=S四边形ABCD,故此选项正确;③∵AD∥BC,∴∠ADE=∠DEC,∵AB=5,AE=4,∠AEB=90°,∴BE=3,∵BC=8,∴EC=CD=5,∴∠CED=∠CDE,∴∠ADE=∠CDE,∴DE平分∠ADC,故此选项正确;④当∠AED=∠ADC时,由③可得∠AED=∠EDC,故AE∥DC,与已知AB∥DC矛盾,故此选项错误.故答案为:①②③.【点睛】此题主要考查了平行四边形的性质以及勾股定理、三角形面积求法等知识,正确应用平行四边形的性质是解题关键.17、1.【解析】

先连接AC,求出AC的长,再判断出△ABC的形状,继而根据三角形面积公式进行求解即可.【详解】连接AC,∵△ACD是直角三角形,∴,因为102+122=132,所以△ABC是直角三角形,则要求的面积即是两个直角三角形的面积差,即×24×10-×6×8=120-24=1,故答案为:1.【点睛】本题考查了勾股定理及其逆定理,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.18、a>1且a≠2【解析】

分式方程去分母得:2x﹣a=x﹣1,解得:x=a﹣1,根据题意得:a﹣1>0,解得:a>1.又当x=1时,分式方程无意义,∴把x=1代入x=a﹣1得a=2.∴要使分式方程有意义,a≠2.∴a的取值范围是a>1且a≠2.三、解答题(共66分)19、(1)证明见解析;(2)证明见解析.【解析】

(1)根据已知条件证明AE=CF,从而根据SAS可证明两三角形全等;(2)先证明DE=BE,再根据邻边相等的平行四边形是菱形,从而得出结论.【详解】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠A=∠C,∵点E、F分别是AB、CD的中点,∴AE=AB,CF=CD,∴AE=CF,在△ADE和△CBF中,∵,∴△ADE≌△CBF(SAS);(2)∵∠G=90°,AG∥BD,AD∥BG,∴四边形AGBD是矩形,∴∠ADB=90°,在Rt△ADB中∵E为AB的中点,∴AE=BE=DE,∵DF∥BE,DF=BE,∴四边形DEBF是平行四边形,∴四边形DEBF是菱形.【点睛】本题主要考查了平行四边形的性质、菱形的判定,直角三角形的性质:在直角三角形中斜边中线等于斜边一半,难度适中.20、(1)当m≠0和3时,原方程有两个不相等的实数根;(2)可取的正整数m的值分别为1.【解析】

(1)利用一元二次方程的定义和判别式的意义得到m≠0且△=[-(m+3)]2-4×m×3=(m-3)2>0,从而可得到m的范围;

(2)利用求根公式解方程得到x1=1,x2=,利用此方程的两根均为正整数得到m=1或m=3,然后利用(1)的范围可确定m的值.【详解】解:(1)由题意得:m≠0且>0,∴当m≠0和3时,原方程有两个不相等的实数根.(2)∵此方程的两根均为正整数,即,解方程得,.∴可取的正整数m的值分别为1.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.21、(1)m=2,k=4;(2)AB=1.【解析】分析:(1)将点P(2,m)代入y=x,求出m=2,再将点P(2,2)代入y=,即可求出k的值;(2)分别求出A、B两点的坐标,即可得到线段AB的长.详解:(1)∵函数y=x的图象过点P(2,m),∴m=2,∴P(2,2),∵函数y=(x>0)的图象过点P,∴k=2×2=4;(2)将y=4代入y=x,得x=4,∴点A(4,4).将y=4代入y=,得x=1,∴点B(1,4).∴AB=4-1=1.点睛:本题考查了利用待定系数法求函数解析式以及函数图象上点的坐标特征,解题时注意:点在图象上,点的坐标就一定满足函数的解析式.22、;0【解析】

先利用乘法公式和单项式乘多项式法则将原式进行化简,再将x=1代入求值即可.【详解】解:原式=1(x1-1)-1x1+x==当x=1时,原式=0【点睛】本题考查的是整式的化简求值,能够准确计算是解题的关键.23、见解析【解析】

延长DE至F,使EF=DE,连接CF,通过证明△ADE≌△CFE和证明四边形BCFD是平行四边形即可证明三角形的中位线平行于三角形的第三边并且等于第三边的一半.【详解】证明:延长DE至F,使EF=DE,连接CF∵E是AC中点,∴AE=CE,在△ADE和△CFE中,∴△ADE≌△CFE(SAS),∴AD=CF,∠ADE=∠F∴BD∥CF,∵AD=BD,∴BD=CF∴四边形BCFD是平行四边形(一组对边平行且相等的四边形是平行四边形)∴DF∥BC,DF=BC,∴DE∥CB,DE=BC.【点睛】本题考查了三角形的中位线定理的证明,用到的知识点有全等三角形的判定和性质以及平行四边形的判定和性质.24、(1)k=﹣1,b=6;(2)满足条件的点D坐标是(12,﹣12)或(6,﹣6)【解析】

(1)把P、Q的坐标代入反比例函数解析式可求得m、n的值,再把P、Q坐标代入直线解析式可求得k、b的值;(2)结合(1)可先求得A、B坐标,可求得C点坐标,再由条件可求得直线OD的解析式,由BO=CD可求得D点坐标.【详解】解:(1)把P(1,m)代入y=,得m=5,∴P(1,5),把Q(n,1)代入y=,得n=5,∴Q(5,1),P(1,5)、Q(5,1)代入y=kx+b得,解得,即k=﹣1,b=6;(2)由(1)知y=﹣x+6,∴A(6,0)B(0,6)∵C点在直线AB上,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论