2022年四川省攀枝花市普通高校对口单招数学自考测试卷(含答案)_第1页
2022年四川省攀枝花市普通高校对口单招数学自考测试卷(含答案)_第2页
2022年四川省攀枝花市普通高校对口单招数学自考测试卷(含答案)_第3页
2022年四川省攀枝花市普通高校对口单招数学自考测试卷(含答案)_第4页
2022年四川省攀枝花市普通高校对口单招数学自考测试卷(含答案)_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年四川省攀枝花市普通高校对口单招数学自考测试卷(含答案)学校:________班级:________姓名:________考号:________

一、单选题(22题)1.计算sin75°cos15°-cos75°sin15°的值等于()A.0

B.1/2

C.

D.

2.设a>b>0,c<0,则下列不等式中成立的是A.ac>bc

B.

C.

D.

3.函数1/㏒2(x-2)的定义域是()A.(-∞,2)B.(2,+∞)C.(2,3)U(3,+∞)D.(2,4)U(4,+∞)

4.将函数图像上所有点向左平移个单位长度,再把所得图像上各点的横坐标扩大到原来的2倍(纵向不变),则所得到的图像的解析为()A.

B.

C.

D.

5.若函数y=√1-X,则其定义域为A.(-1,+∞)B.[1,+∞]C.(-∞,1]D.(-∞,+∞)

6.有四名高中毕业生报考大学,有三所大学可供选择,每人只能填报一所大学,则报考的方案数为()A.

B.

C.

D.

7.设集合,则A与B的关系是()A.

B.

C.

D.

8.直线以互相平行的一个充分条件为()A.以都平行于同一个平面

B.与同一平面所成角相等

C.平行于所在平面

D.都垂直于同一平面

9.设函数f(x)=x2+1,则f(x)是()

A.奇函数B.偶函数C.非奇非偶函数D.既是奇函数又是偶函数

10.圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=()A.-4/3

B.-3/4

C.

D.2

11.函数y=Asin(wx+α)的部分图象如图所示,则()A.y=2sin(2x-π/6)

B.y=2sin(2x-π/3)

C.y=2sin(x+π/6)

D.y=2sin(x+π/3)

12.在等比数列中,a1+a2=162,a3+a4=18,那么a4+a5等于()A.6B.-6C.±2D.±6

13.下列函数中是奇函数,且在(-∞,0)减函数的是()A.y=

B.y=1/x

C.y==x2

D.y=x3

14.已知函数f(x)=sin(2x+3π/2)(x∈R),下面结论错误的是()A.函数f(x)的最小正周期为π

B.函数f(x)是偶函数

C.函数f(x)是图象关于直线x=π/4对称

D.函数f(x)在区间[0,π/2]上是增函数

15.(1-x)4的展开式中,x2的系数是()A.6B.-6C.4D.-4

16.已知a=(1,2),则2a=()A.(1,2)B.(2,4)C.(2,1)D.(4,2)

17.函数y=3sin+4cos的周期是()A.2πB.3πC.5πD.6π

18.A.1B.2C.3D.4

19.过点A(-1,0),B(0,-1)直线方程为()A.x+y-1=0B.x-y-1=0C.x+y+l=0D.x-y+l=0

20.已知椭圆x2/25+y2/m2=1(m>0)的左焦点为F1(-4,0)则m=()A.2B.3C.4D.9

21.从1,2,3,4这4个数中任取两个数,则取出的两数之和是奇数的概率是()A.1/5B.1/5C.2/5D.2/3

22.己知向量a

=(2,1),b

=(-1,2),则a,b之间的位置关系为()A.平行B.不平行也不垂直C.垂直D.以上都不对

二、填空题(10题)23.已知那么m=_____.

24.

25.若展开式中各项系数的和为128,则展开式中x2项的系数为_____.

26.若l与直线2x-3y+12=0的夹角45°,则l的斜线率为_____.

27.

28.

29.不等式(x-4)(x+5)>0的解集是

30.

31.等差数列的前n项和_____.

32.二项式的展开式中常数项等于_____.

三、计算题(10题)33.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.

34.在等差数列{an}中,前n项和为Sn

,且S4

=-62,S6=-75,求等差数列{an}的通项公式an.

35.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.

36.解不等式4<|1-3x|<7

37.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.

38.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。

39.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.

40.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。

41.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.

42.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.

四、简答题(10题)43.以点(0,3)为顶点,以y轴为对称轴的拋物线的准线与双曲线3x2-y2+12=0的一条准线重合,求抛物线的方程。

44.某篮球运动员进行投篮测验,每次投中的概率是0.9,假设每次投篮之间没有影响(1)求该运动员投篮三次都投中的概率(2)求该运动员投篮三次至少一次投中的概率

45.求到两定点A(-2,0)(1,0)的距离比等于2的点的轨迹方程

46.简化

47.已知抛物线的焦点到准线L的距离为2。(1)求拋物线的方程及焦点下的坐标。(2)过点P(4,0)的直线交拋物线AB两点,求的值。

48.己知边长为a的正方形ABCD,PA丄底面ABCD,PA=a,求证,PC丄BD

49.化简

50.求过点P(2,3)且被两条直线:3x+4y-7=0,:3x+4y+8=0所截得的线段长为的直线方程。

51.证明:函数是奇函数

52.已知A,B分别是椭圆的左右两个焦点,o为坐标的原点,点P(-1,)在椭圆上,线段PB与y轴的焦点M为线段PB的中心点,求椭圆的标准方程

五、解答题(10题)53.

54.成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{bn}中的b3,b4,b5(1)求数列{bn}的通项公式;(2)数列{bn}的前n项和为Sn,求证:数列{Sn+5/4}是等比数列

55.已知椭圆C的重心在坐标原点,两个焦点的坐标分别为F1(4,0),F2(-4,0),且椭圆C上任一点到两焦点的距离和等于10.求:(1)椭圆C的标准方程;(2)设椭圆C上一点M使得直线F1M与直线F2M垂直,求点M的坐标.

56.已知直线经过椭圆C:x2/a2+y2/b2=1(a>b>0)的一个顶点B和一个焦点F.(1)求椭圆的离心率;(2)设P是椭圆C上动点,求|PF|-|PB|的取值范围,并求|PF|-|PB||取最小值时点P的坐标.

57.

58.

59.

60.已知圆X2+y2=5与直线2x-y-m=0相交于不同的A,B两点,O为坐标原点.(1)求m的取值范围;(2)若OA丄OB,求实数m的值.

61.如图,在三棱锥A-BCD中,AB丄平面BCD,BC丄BD,BC=3,BD=4,直线AD与平面BCD所成的角为45°点E,F分别是AC,AD的中点.(1)求证:EF//平面BCD;(2)求三棱锥A-BCD的体积.

62.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)

六、单选题(0题)63.下表是某厂节能降耗技术改造后生产某产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据,用最小二乘法得到y关于x的线性回归方程y^=0.7x+a,则a=()A.0.25B.0.35C.0.45D.0.55

参考答案

1.D三角函数的两角和差公式sin75°cosl5°-cos75°sinl5°=sin(75°-15°)=sin60°=

2.B

3.C函数的定义.由题知以该函数的定义域为(2,3)∪(3,+∞)

4.B

5.C

6.C

7.A

8.D根据直线与平面垂直的性质定理,D正确。

9.B由题可知,f(x)=f(-x),所以函数是偶函数。

10.A点到直线的距离公式.由圆的方程x2+y2-2x-8y+130得圆心坐标为(1,4),由点到直线的距离公式得d=,解之得a=-4/3.

11.A三角函数图像的性质.由题图可知,T=2[π/3-(-π/6)]=π,所以ω=2,由五点作图法可知2×π/3+α=π/2,所以α=-π/6所以函数的解析式为y=2sin(2x-π/6)

12.D设公比等于q,则由题意可得,,解得,或。当时,,当时,,所以结果为。

13.B函数奇偶性,增减性的判断.A是非奇非偶函数;C是偶函数;D是增函数.

14.C三角函数的性质.f(x)=sin(2x+3π/2)=-cos2x,故其最小正周期为π,故A正确;易知函数f(x)是偶函数,B正确;由函数f(x)=-cos2x的图象可知,函数f(x)的图象关于直线x=π/4不对称,C错误;由函数f(x)的图象易知,函数f(x)在[0,π/2]上是增函数,D正确,

15.A

16.B平面向量的线性运算.=2(1,2)=(2,4).

17.Dy=3sin(x/3)+4cos(x/3)=5[3/5sin(x/3)+4/5cos(x/3)]=5sin(x/3+α),所以最小正周期为6π。

18.B

19.C直线的两点式方程.点代入验证方程.

20.B椭圆的性质.由题意知25-m2=16,解得m2=9,又m>0,所以m=3.

21.D古典概型的概率.任意取到两个数的方法有6种:1,2;1,3;1,4;2,3;2,4;3,4;,满足题意的有4种:1,2;1,4;2,3;3,4;,则所求的概率为4/6=2/3

22.C

23.6,

24.3/49

25.-189,

26.5或,

27.1-π/4

28.7

29.{x|x>4或x<-5}方程的根为x=4或x=-5,所以不等式的解集为{x|x>4或x<-5}。

30.-2/3

31.2n,

32.15,由二项展开式的通项可得,令12-3r=0,得r=4,所以常数项为。

33.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4

34.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

35.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2

36.

37.

38.

39.

40.

41.

42.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为

43.由题意可设所求抛物线的方程为准线方程为则y=-3代入得:p=12所求抛物线方程为x2=24(y-3)

44.(1)P=0.9×0.9×0.9=0.729(2)P=1-0.1×0.1×0.1=0.999

45.

46.

47.(1)拋物线焦点F(,0),准线L:x=-,∴焦点到准线的距离p=2∴抛物线的方程为y2=4x,焦点为F(1,0)(2)直线AB与x轴不平行,故可设它的方程为x=my+4,得y2-4m-16=0由设A(x1,x2),B(y1,y2),则y1y2=-16∴

48.证明:连接ACPA⊥平面ABCD,PC是斜线,BD⊥ACPC⊥BD(三垂线定理)

49.sinα

50.x-7y+19=0或7x+y-17=0

51.证明:∵∴则,此函数为奇函数

52.点M是线段PB的中点又∵OM丄AB,∴PA丄AB则c=1+=1,a2=b2+c2解得,a2=2,b2=1,c2=1因此椭圆的标准方程为

53.

54.(1)设成等差数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论