版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
《第1章三角形的证明》一、选择题1.满足下列条件的三角形不一定是直角三角形的是()A.三条边的比为5:12:13B.三个角的度数比为2:3:5C.有一边等于另一条边的一半D.三角形的三边长分别是24、25和72.已知下列命题:①若a≤0,则|a|=﹣a;②若ma2>na2,则m>n;③两组对角分别相等的四边形是平行四边形;④垂直于弦的直径平分弦.其中原命题与逆命题均为真命题的个数是()A.1个 B.2个 C.3个 D.4个3.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度为(滑轮上方的部分忽略不计)为()A.12m B.13m C.16m D.17m4.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A. B. C. D.5.如图,将边长为8cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN长是()A.3cm B.4cm C.5cm D.6cm二、填空题6.如图,在△ABC中,CA=CB,AD⊥BC,BE⊥AC,AB=5,AD=4,则AE=.7.下列命题中,其逆命题成立的是.(只填写序号)①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③如果两个实数相等,那么它们的平方相等;④如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.8.如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是.9.如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底3cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为cm.10.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C=度.三、解答题11.如图,BC=4cm,AB=3cm,AF=12cm,AC⊥AF,正方形CDEF的面积是169cm2,试判断△ABC的形状?12.如图所示、△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,D在AB上.(1)求证:△AOC≌△BOD;(2)若AD=1,BD=2,求CD的长.13.在△ABC中,BC=a,AC=b,AB=c,设c为最长边,当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,探究△ABC的形状(按角分类).(1)当△ABC三边分别为6、8、9时,△ABC为三角形;当△ABC三边分别为6、8、11时,△ABC为三角形.(2)猜想,当a2+b2c2时,△ABC为锐角三角形;当a2+b2c2时,(3)判断当a=2,b=4时,△ABC的形状,并求出对应的c的取值范围.
《第1章三角形的证明》参考答案与试题解析一、选择题1.满足下列条件的三角形不一定是直角三角形的是()A.三条边的比为5:12:13B.三个角的度数比为2:3:5C.有一边等于另一条边的一半D.三角形的三边长分别是24、25和7【考点】勾股定理的逆定理;三角形内角和定理.【分析】根据三角形的内角和定理及勾股定理的逆定理进行分析,从而得到答案.【解答】解:A、因为其符合勾股定理的逆定理,所以是直角三角形,故正确;B、因为根据三角形内角和定理可求出三个角分别为36度,54度,90度,所以是直角三角形,故正确;C、因为根据三角形内角和公式得三个角中没有90°角,所以不是直角三角形,故不正确;D、因为其符合勾股定理的逆定理,所以是直角三角形,故正确;故选D.【点评】题考查了直角三角形的判定:可用勾股定理的逆定理或三角形的内角和定理来判定.2.(2023•包头)已知下列命题:①若a≤0,则|a|=﹣a;②若ma2>na2,则m>n;③两组对角分别相等的四边形是平行四边形;④垂直于弦的直径平分弦.其中原命题与逆命题均为真命题的个数是()A.1个 B.2个 C.3个 D.4个【考点】命题与定理.【分析】先对每一命题进行判断,再写出每一命题的逆命题,然后判断出真假,即可得出原命题与逆命题均为真命题的个数.【解答】解:①若a≤0,则|a|=﹣a是真命题,逆命题为若|a|=﹣a,则a≤0是真命题,②若ma2>na2,则m>n是真命题,逆命题为若m>n,则ma2>na2是假命题,③两组对角分别相等的四边形是平行四边形是真命题,逆命题为平行四边形的两组对角分别相等是真命题,④垂直于弦的直径平分弦是真命题,逆命题为平分弦的直径垂直于弦是假命题,所以原命题与逆命题均为真命题的个数是2个.故选:B.【点评】本题考查了命题与定理;主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,关键是要熟悉有关的性质定理.3.(2023•济南)如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度为(滑轮上方的部分忽略不计)为()A.12m B.13m C.16m D.17m【考点】勾股定理的应用.【专题】应用题.【分析】根据题意画出示意图,设旗杆高度为x,可得AC=AD=x,AB=(x﹣2)m,BC=8m,在Rt△ABC中利用勾股定理可求出x.【解答】解:设旗杆高度为x,则AC=AD=x,AB=(x﹣2)m,BC=8m,在Rt△ABC中,AB2+BC2=AC2,即(x﹣2)2+82=x2,解得:x=17,即旗杆的高度为17米.故选:D.【点评】本题考查了勾股定理的应用,解答本题的关键是构造直角三角形,构造直角三角形的一般方法就是作垂线.4.(2023•广州)在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A. B. C. D.【考点】勾股定理;点到直线的距离;三角形的面积.【专题】计算题.【分析】根据题意画出相应的图形,如图所示,在直角三角形ABC中,由AC及BC的长,利用勾股定理求出AB的长,然后过C作CD垂直于AB,由直角三角形的面积可以由两直角边乘积的一半来求,也可以由斜边AB乘以斜边上的高CD除以2来求,两者相等,将AC,AB及BC的长代入求出CD的长,即为C到AB的距离.【解答】解:根据题意画出相应的图形,如图所示:在Rt△ABC中,AC=9,BC=12,根据勾股定理得:AB==15,过C作CD⊥AB,交AB于点D,又S△ABC=AC•BC=AB•CD,∴CD===,则点C到AB的距离是.故选A【点评】此题考查了勾股定理,点到直线的距离,以及三角形面积的求法,熟练掌握勾股定理是解本题的关键.5.如图,将边长为8cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN长是()A.3cm B.4cm C.5cm D.6cm【考点】勾股定理;翻折变换(折叠问题).【专题】压轴题.【分析】根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则DN=NE=8﹣x,CE=4cm,根据勾股定理就可以列出方程,从而解出CN的长.【解答】解:设CN=xcm,则DN=(8﹣x)cm,由折叠的性质知EN=DN=(8﹣x)cm,而EC=BC=4cm,在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,即(8﹣x)2=16+x2,整理得16x=48,所以x=3.故选A.【点评】折叠问题其实质是轴对称,对应线段相等,对应角相等,通常用勾股定理解决折叠问题.二、填空题6.如图,在△ABC中,CA=CB,AD⊥BC,BE⊥AC,AB=5,AD=4,则AE=3.【考点】勾股定理;全等三角形的判定与性质;等腰三角形的性质.【分析】根据等腰三角形的性质可知:两腰上的高相等所以AD=BE=4,再利用勾股定理即可求出AE的长.【解答】解:∵在△ABC中,CA=CB,AD⊥BC,BE⊥AC,∴AD=BE=4,∵AB=5,∴AE==3,故答案为:3.【点评】本题考查了等腰三角形的性质以及勾股定理的运用,题目比较简单.7.下列命题中,其逆命题成立的是①④.(只填写序号)①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③如果两个实数相等,那么它们的平方相等;④如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.【考点】命题与定理;实数的运算;角的概念;平行线的判定与性质;勾股定理;勾股定理的逆定理.【专题】推理填空题.【分析】把一个命题的条件和结论互换就得到它的逆命题,再分析逆命题是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:①两直线平行,同旁内角互补,正确;②如果两个角相等,那么它们是直角,错误;③如果两个实数的平方相等,那么这两个实数相等,错误;④如果一个三角形是直角三角形,c为斜边,则a2+b2=c2,正确.故答案为①④.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题,难度适中.8.如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是6cm2.【考点】翻折变换(折叠问题);勾股定理.【专题】计算题.【分析】先根据勾股定理得到AB=10cm,再根据折叠的性质得到DC=DC′,BC=BC′=6cm,则AC′=4cm,在Rt△ADC′中利用勾股定理得(8﹣x)2=x2+42,解得x=3,然后根据三角形的面积公式计算即可.【解答】解:∵∠C=90°,BC=6cm,AC=8cm,∴AB=10cm,∵将△BCD沿BD折叠,使点C落在AB边的C′点,∴△BCD≌△BC′D,∴∠C=∠BC′D=90°,DC=DC′,BC=BC′=6cm,∴AC′=AB﹣BC′=4cm,设DC=xcm,则AD=(8﹣x)cm,在Rt△ADC′中,AD2=AC′2+C′D2,即(8﹣x)2=x2+42,解得x=3,∵∠AC′D=90°,∴△ADC′的面积═×AC′×C′D=×4×3=6(cm2).故答案为6cm2.【点评】本题考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应线段相等,对应点的连线段被折痕垂直平分.也考查了勾股定理.9.如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底3cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为5cm.【考点】平面展开﹣最短路径问题.【专题】压轴题;探究型.【分析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′C的长度即为所求.【解答】解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′C,则A′C即为最短距离,A′C====5cm.故答案为:5.【点评】本题考查了平面展开﹣﹣﹣最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.10.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C=135度.【考点】勾股定理的逆定理;正方形的性质;旋转的性质.【专题】压轴题.【分析】首先根据旋转的性质得出,△EBE′是直角三角形,进而得出∠BEE′=∠BE′E=45°,即可得出答案.【解答】解:连接EE′∵△ABE绕点B顺时针旋转90°到△CBE′∴∠EBE′是直角,∴△EBE′是直角三角形,∵△ABE与△CE′B全等∴BE=BE′=2,∠AEB=∠BE′C∴∠BEE′=∠BE′E=45°,∵EE′2=22+22=8,AE=CE′=1,EC=3,∴EC2=E′C2+EE′2,∴△EE′C是直角三角形,∴∠EE′C=90°,∴∠AEB=135°.故答案为:135.【点评】此题主要考查了旋转的性质,根据已知得出△EBE′是直角三角形是解题关键.三、解答题11.如图,BC=4cm,AB=3cm,AF=12cm,AC⊥AF,正方形CDEF的面积是169cm2,试判断△ABC的形状?【考点】勾股定理的应用;勾股定理的逆定理;正方形的性质.【分析】首先根据正方形的面积求出FC的长,再在Rt△ACF中利用勾股定理求出AC的长,然后根据勾股定理逆定理证明∠B=90°即可.【解答】解:∵正方形CDEF的面积是169cm2,∴FC=13cm…(1分),在Rt△ACF中,由勾股定理得,AC2=CF2﹣AF2=132﹣122=25,…(3分)在△ABC中,因为AB2+BC2=32+42=25=AC2…(4分)由勾股定理的逆定理得:△ABC是直角三角形.…(5分)【点评】此题主要考查了正方形的性质,勾股定理以及勾股定理的逆定理的运用,关键是求出AC得出长.12.如图所示、△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,D在AB上.(1)求证:△AOC≌△BOD;(2)若AD=1,BD=2,求CD的长.【考点】全等三角形的判定与性质;等腰直角三角形.【专题】计算题;证明题.【分析】(1)因为∠AOB=∠COD=90°,由等量代换可得∠DOB=∠AOC,又因为△AOB和△COD均为等腰直角三角形,所以OC=OD,OA=OB,则△AOC≌△BOD;(2)由(1)可知△AOC≌△BOD,所以AC=BD=2,∠CAO=∠DBO=45°,由等量代换求得∠CAB=90°,则CD=.【解答】(1)证明:∵∠DOB=90°﹣∠AOD,∠AOC=90°﹣∠AOD,∴∠BOD=∠AOC,又∵OC=OD,OA=OB,在△AOC和△BOD中,∴△AOC≌△BOD(SAS);(2)解:∵△AOC≌△BOD,∴AC=BD=2,∠CAO=∠DBO=45°,∴∠CAB=∠CAO+∠BAO=90°,∴CD===.【点评】此题为全等三角形判定的综合题.考查学生综合运用数学知识的能力.13.在△ABC中,BC=a,AC=b,AB=c,设c为最长边,当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,探究△ABC的形状(按角分类).(1)当△AB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 制作小技巧及演讲注意事项课件
- 2024年度工程招投标与合同管理合同
- 财务人员述职报告范文
- 运输合同协议书范本
- 土地租赁协议书范例
- 苗木供应合同2024年华南地区
- 咨询服务合同集合
- 实习协议书电子版
- 《当归红花丹参》课件
- 《高科技英语讲》课件
- 2024届上海高考语文课内古诗文背诵默写篇目(精校版)
- 中国在线监测设备行业市场供需态势及未来趋势研判报告
- 休闲体育专业人才培养方案
- 职业技术学校《摄影摄像技术》课程标准(技能目标过于简单)
- 北京教育出版社心理健康六年级教案
- 预应力混凝土管桩(L21G404)
- 2024-2034年中国化机浆行业发展趋势及投资前景预测报告
- 学校浴室承包合同协议书
- 2024年共青团团课考试题库及答案
- 小学数学教学经验交流
- 2024届高考英语作文复习专项:读后续写“自我成长”类范文12篇 讲义素材
评论
0/150
提交评论