下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省梅州市三河中学2022-2023学年高一数学理上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设函数,则是
(
)A.最小正周期为p的奇函数
B.最小正周期为p的偶函数C.最小正周期为的奇函数
D.最小正周期为的偶函数参考答案:B2.等比数列中,,则数列的前8项和等于(
)
A.6
B.5
C.4
D.3参考答案:C3.已知△ABC三角满足,则sinC的最大值为A.
B.
C.
D.参考答案:B4.要完成下列两项调查:①从某社区125户高收入家庭、280户中等收入家庭、95户低收入家庭中选出100户调查社会购买力的某项指标;②从某中学的15名艺术特长生中选出3名调查学习负担情况,宜采用的抽样方法依次为()A.①随机抽样法,②系统抽样法B.①分层抽样法,②随机抽样法C.①系统抽样法,②分层抽样法D.①②都用分层抽样法参考答案:B①由于社会购买力与收入有关系,所以应采用分层抽样法;②由于人数少,可以采用简单随机抽样法要完成下列二项调查:①从某社区125户高收入家庭,280户中等收入家庭,95户低收入家庭中,选出100户调查社会解:∵社会购买力的某项指标,受到家庭收入的影响而社区中各个家庭收入差别明显①用分层抽样法,而从某中学的15名艺术特长生,要从中选出3人调查学习负担情况的调查中个体之间差别不大,且总体和样本容量较小,∴②用随机抽样法故选B5.某中学有学生270人,其中一年级108人,二、三年级各81人,现要用抽样方法抽取10人形成样本,将学生按一、二、三年级依次统一编号为1,2,…,270,如果抽得号码有下列四种情况:①5,9,100,107,111,121,180,195,200,265;②7,34,61,88,115,142,169,196,223,250;③30,57,84,111,138,165,192,219,246,270;④11,38,60,90,119,146,173,200,227,254;其中可能是由分层抽样得到,而不可能是由系统抽样得到的一组号码为()A.①② B.②③ C.①③ D.①④参考答案:D【考点】B4:系统抽样方法.【分析】先考虑那种情况为分层抽样,根据分层抽样的概念,需把总体按个体差异分成几层,再按每层的比抽取样本.然后,再几种分层抽样中,再考虑哪几种是系统抽样,在系统抽样中,要抽取的样本容量是几,需把总体分成几部分,再按事先约定好的方法再每部分中抽取1个个体,就得到了样本.【解答】解:先考虑那种情况为分层抽样,分层抽样需按年级分成三层,一年级抽4个人,二三年级个抽3个人,也即1到108号抽4个,109到189号抽3个,190到270号抽3个,可判断①②④是分层抽样,在判断①②④中那几个是系统抽样,系统抽样需把1到270号分成均与的10部分,每部分按事先约定好的方法抽取1个,则②为系统抽样.故选D6.如图是某市举办青少年运动会上,7位裁判为某武术队员打出的分数的茎叶图,左边数字表示十位数字,右边数字表示个位数字,这些数据的中位数是(),去掉一个最低分和最高分所剩数据的平均数是()A.86.5,86.7 B.88,86.7 C.88,86.8 D.86,5,86.8参考答案:C【考点】B8:频率分布直方图.【分析】根据茎叶图中的数据,利用中位数和平均数的定义求出结果即可.【解答】解:由茎叶图知,这组数据共有7个,按从小到大的顺序排在中间的是88,所以中位数是88;去掉一个最高分94和一个最低分79后,所剩数据为84,85,88,88,89,它们的平均数为(84+85+88+89)=86.8.故选:C.【点评】本题考查了根据茎叶图中的数据,求中位数和平均数的应用问题,是基础题.7.不等式<0的解集为()A.{x|﹣2<x<3} B.{x|x<﹣2} C.{x|x<﹣2或x>3} D.{x|x>3}参考答案:A【考点】一元二次不等式的解法.【分析】本题的方法是:要使不等式小于0即要分子与分母异号,得到一个一元二次不等式,讨论x的值即可得到解集.【解答】解:∵,得到(x﹣3)(x+2)<0即x﹣3>0且x+2<0解得:x>3且x<﹣2所以无解;或x﹣3<0且x+2>0,解得﹣2<x<3,所以不等式的解集为﹣2<x<3故选A8.设函数f(x)=sin(2x+),则下列结论正确的是()A.f(x)的图象关于直线x=对称B.f(x)的图象关于点(,0)对称C.f(x)的最小正周期为π,且在[0,]上为增函数D.把f(x)的图象向右平移个单位,得到一个偶函数的图象参考答案:C【考点】命题的真假判断与应用;函数y=Asin(ωx+φ)的图象变换.【专题】计算题;三角函数的图像与性质.【分析】通过x=函数是否取得最值判断A的正误;通过x=,函数值是否为0,判断B的正误;利用函数的周期与单调性判断C的正误;利用函数的图象的平移判断D的正误.【解答】解:对于A,当x=时,函数f(x)=sin(2×+)=,不是函数的最值,判断A的错误;对于B,当x=,函数f(x)=sin(2×+)=1≠0,判断B的错误;对于C,f(x)的最小正周期为π,由,可得,k∈Z,在[0,]上为增函数,∴选项C的正确;对于D,把f(x)的图象向右平移个单位,得到函数f(x)=sin(2x+),函数不是偶函数,∴选项D不正确.故选:C.【点评】本题考查三角函数的基本性质的应用,函数的单调性、奇偶性、周期性,基本知识的考查.9.如图,该程序运行后的输出结果为()A.0B.3C.12D.﹣2参考答案:C10.(5分)已知是(﹣∞,+∞)上的增函数,那么a的取值范围是() A. [,3) B. (0,3) C. (1,3) D. (1,+∞)参考答案:A考点: 对数函数的单调性与特殊点;函数单调性的性质.专题: 计算题;函数的性质及应用.分析: 由x<1时,f(x)=(3﹣a)x﹣a是增函数解得a<3;由x≥1时,f(x)=logax是增函数,解得a>1.再由f(1)=loga1=0,(3﹣a)x﹣a=3﹣2a,知a.由此能求出a的取值范围.解答: ∵f(x)=是(﹣∞,+∞)上的增函数,∴x<1时,f(x)=(3﹣a)x﹣a是增函数∴3﹣a>0,解得a<3;x≥1时,f(x)=logax是增函数,解得a>1.∵f(1)=loga1=0∴x<1时,f(x)<0∵x=1,(3﹣a)x﹣a=3﹣2a∵x<1时,f(x)=(3﹣a)x﹣a递增∴3﹣2a≤f(1)=0,解得a.所以≤a<3.故选A.点评: 本题考查函数的单调性的应用,解题时要认真审题,仔细解答,易错点是分段函数的分界点处单调性的处理.二、填空题:本大题共7小题,每小题4分,共28分11.如右图,有一个六边形的点阵,它的中心是1个点(算第1层),第2层每边有2个点,第3层每边有3个点,…,依此类推,如果一个六边形点阵共有169个点,那么它的层数为__________.参考答案:
8
12..已知函数,不等式对于恒成立,则实数的取值范围是
.参考答案:略13.已知数列{an}的通项公式为,则数列{an}前15项和为S15的值为
.参考答案:因为数列的通项公式为,所以,故答案为.
14.关于函数有下列命题:①函数的图象关于y轴对称;②在区间(-∞,0)上,函数是减函数;③函数f(x)的最小值为lg2;④在区间(1,+∞)上,函数f(x)是增函数.其中正确命题序号为_______________.参考答案:①③④15.(5分)函数y=Asin(ωx+φ)(A>0,ω>0)的部分图象如图所示,则f(1)+f(2)+f(3)+…+f(11)的值等于=
.参考答案:考点: 由y=Asin(ωx+φ)的部分图象确定其解析式.专题: 计算题.分析: 根据所给的三角函数的图象,可以看出函数的振幅和周期,根据周期公式求出ω的值,写出三角函数的形式,根据函数的图象过点(2,2),代入点的坐标,整理出初相,点的函数的解析式,根据周期是8和特殊角的三角函数求出结果.解答: 由图可知函数f(x)的振幅A=2,周期为8,∴8=∴ω=y=2sin(x+φ)∵函数的图象过点(2,2)∴2=2sin(2×+φ)=2sin(+φ)=2cosφ∴cosφ=1∴φ=2kπ当k=0时,φ=0∴三角函数的解析式是y=2sinx∵f(1)+f(2)+f(3)+f(4)+f(5)+f(6)+f(7)+f(8)=0∴f(1)+f(2)+f(3)+…+f(11)=2sin+2sin+…+2sin=2+2故答案为:2+2点评: 本题考查根据函数y=Asin(ωx+φ)的图象确定函数的解析式,考查特殊角的三角函数值,本题解题的关键是看出要求结果的前八项之和等于0,要理解好函数的中的周期、振幅、初相等概念,本题是一个中档题目.16.若a、b是正常数,a≠b,x、y∈(0,+∞),则+≥,当且仅当=时上式取等号.利用以上结论,可以得到函数f(x)=+的最小值为________.参考答案:35由题意知,f(x)=+,x∈,∵2≠3且均为正常数,x∈,∴1-2x∈(0,1),∴+≥,当且仅当=时,即x=时等号成立,即f(x)≥35.17.已知变量满足则的最大值为__________。参考答案:12三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(1)设x、y、zR,且x+y+z=1,求证x2+y2+z2≥;(2)设二次函数f(x)=ax2+bx+c(a>0),方程f(x)-x=0有两个实根x1,x2,且满足:0<x1<x2<,若x(0,x1)。求证:x<f(x)<x1
参考答案:(1)∵x+y+z=1,∴1=(x+y+z)2=x2+y2+z2+2xy+2xz+2yz
≤3(x2+y2+z2)
∴x2+y2+z2≥
(2)令F(x)=f(x)-x,x1,x2是f(x)-x=0的根,∴F(x)=a(x-x1)(x-x2)∵0<x<x1<x2<
∴x-x1<0,x-x2<0
a>0∴F(x)>0
即x<f(x)另一方面:x1-f(x)=x1-[x+F(x)]=x1-x-a(x-x1)(x-x2)=(x1-x)[1+a(x-x2)]∵0<x<x1<x2<∴x1-x>0
1+a(x-x2)=1+ax-ax2>1-ax2>0∴x1-f(x)>0
∴f(x)<x1综上可得:x<f(x)<x119.如图1所示,在等腰梯形ABCD,,,垂足为E,,.将沿EC折起到的位置,使平面平面,如图2所示,点G为棱的中点.(1)求证:BG∥平面;(2)求证:AB⊥平面;(3)求三棱锥的体积.参考答案:(1)证明见解析;(2)证明见解析;(3).【详解】(1)在如图的等腰梯形内,过作的垂线,垂足为,∵,∴,又∵,,,∴四边形为正方形,且,为中点.在如图中,连结,∵点是的中点,∴.又∵,,,平面,,平面,∴平面平面,又∵面,∴平面;(2)∵平面平面,平面平面,,平面,∴平面.又∵平面,∴.又,,,满足,∴.又,平面;(3)∵,,,∴面.又线段为三棱锥底面的高,∴.【点睛】本题考查直线与平面平行、直线与平面垂直的判定,考查空间想象能力与思维能力,训练了利用等积法求多面体的体积,是中档题.20.(16分)设a为实数,记函数的最大值为g(a).(1)若,解关于求x的方程f(x)=1;(2)求g(a).参考答案:考点: 二倍角的正弦;两角和与差的正弦函数;三角函数的最值.专题: 三角函数的求值.分析: (1)当,由方程f(x)=1,可得sinxcosx+sinx+cosx=1.令t=sinx+cosx,则t2=1+2sinxcosx,方程可化为t2+2t﹣3=0,解得t=1,即sinx+cosx=1,即,由此求得x的值的集合.(2)由题意可得t的取值范围是,g(a)即为函数m(t)=at2+t﹣a,的最大值.直线是抛物线m(t)的对称轴,可分a>0、a=0、a<0三种情况,分别求得g(a).解答: (1)由于当,方程f(x)=1,即,即,所以,sinxcosx+sinx+cosx=1(1).…1分令t=sinx+cosx,则t2=1+2sinxcosx,所以.…3分所以方程(1)可化为t2+2t﹣3=0,解得t=1,t=﹣3(舍去).…5分所以sinx+cosx=1,即,解得所求x的集合为.…7分(2)令,∴t的取值范围是.由题意知g(a)即为函数m(t)=at2+t﹣a,的最大值,…9分∵直线是抛物线m(t)=at2+t﹣a的对称轴,∴可分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版房屋买卖合同中的税费分担约定3篇
- 二零二五版电力工程监理劳务分包合同范本2篇
- 基于2025年度预算的网络营销与电商平台建设合同3篇
- 二零二五年度餐饮行业特色农产品配送与扶贫合作合同3篇
- 二零二五版二手房定金交易合同范本2篇
- 二零二五年环保净化设备销售与排放监测合同2篇
- 二零二五年船舶制造车间通风除尘系统合同3篇
- 物业管理委托合同2025年度版18篇
- 二零二五年网络安全风险评估与整改服务合同规范文本283篇
- 全新2025年度体育用品生产加工合同:体育用品设计公司与制造商之间的生产加工协议3篇
- 历史-广东省大湾区2025届高三第一次模拟试卷和答案
- 2024年安全生产法律、法规、标准及其他要求清单
- 2023年高考文言文阅读设题特点及备考策略
- 抗心律失常药物临床应用中国专家共识
- 考级代理合同范文大全
- 2024解析:第三章物态变化-讲核心(原卷版)
- DB32T 1590-2010 钢管塑料大棚(单体)通 用技术要求
- 安全行车知识培训
- 2024年安徽省高校分类对口招生考试数学试卷真题
- 第12讲 语态一般现在时、一般过去时、一般将来时(原卷版)
- 2024年采购员年终总结
评论
0/150
提交评论