下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省揭阳市葵梅中学2021年高一数学文月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若直角坐标平面内A、B两点满足条件:①点A、B都在f(x)的图象上;②点A、B关于原点对称,则对称点对(A,B)是函数的一个“姊妹点对”(点对(A,B)与(B,A)可看作同一个“姊妹点对”).已知函数f(x)=,则f(x)的“姊妹点对”有()个.A.1 B.2 C.3 D.4参考答案:B【考点】函数的值.【分析】首先弄清关于原点对称的点的特点,进而把问题转化为求方程的根的个数,再转化为求函数φ(x)=2ex+x2+2x零点的个数即可.【解答】解:设P(x,y)(x<0),则点P关于原点的对称点为P′(﹣x,﹣y),于是,化为2ex+x2+2x=0,令φ(x)=2ex+x2+2x,下面证明方程φ(x)=0有两解.由x2+2x≤0,解得﹣2≤x≤0,而>0(x≥0),∴只要考虑x∈[﹣2,0]即可.求导φ′(x)=2ex+2x+2,令g(x)=2ex+2x+2,则g′(x)=2ex+2>0,∴φ′(x)在区间[﹣2,0]上单调递增,而φ′(﹣2)=2e﹣2﹣4+2<0,φ′(﹣1)=2e﹣1>0,∴φ(x)在区间(﹣2,0)上只存在一个极值点x0.而φ(﹣2)=2e﹣2>0,φ(﹣1)=2e﹣1﹣1<0,φ(0)=2>0,∴函数φ(x)在区间(﹣2,﹣1),(﹣1,0)分别各有一个零点.也就是说f(x)的“姊妹点对”有两个.故选B.2.集合,集合Q=,则P与Q的关系是()P=Q
B.PQ
C.
D.参考答案:C3.已知函数=sinx与的图象的一个交点的横坐标为,则=(
)A.- B.- C. D.参考答案:B【分析】首先根据题中的条件,得到,从而求得,根据题中所给的,进而求得结果.【详解】由题意得,所以,所以,因为,所以,故选B.【点睛】该题考查的是有关三角函数的问题,涉及到的知识点有诱导公式,已知三角函数值求角,属于简单题目.4.的最小正周期为(
)A
B
C
D
参考答案:A5.与角-终边相同的角是 ()(A) (B)
(C)
(D)参考答案:C略6.已知是正三角形内部一点,,则的面积与的面积之比是(
)
(A)
(B)
(C)2
(D)参考答案:B略7.图中曲线分别表示,,,的图象,则的大小关系是(
).
A.
B.C.
D.参考答案:D8.对于直角坐标平面内的任意两点A(x,y)、B(x,y),定义它们之间的一种“距离”:‖AB‖=︱x-x︱+︱y-y︱.给出下列三个命题:①若点C在线段AB上,则‖AC‖+‖CB‖=‖AB‖;②在△ABC中,若∠C=90°,则‖AC‖+‖CB‖=‖AB‖;③在△ABC中,‖AC‖+‖CB‖>‖AB‖.其中真命题的个数为A.0
B.1 C.2
D.3参考答案:B9.已知函数,,设函数,且函数的零点均在区间内,则的最小值为()A.11
B.10
C.9
D.8参考答案:B略10.下列四组函数中,表示相同函数的一组是
(
)A.
B.C.
D.参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.公比为q的无穷等比数列{an}满足:,,则实数k的取值范围为________.参考答案:(-∞,-2)∪(0,+∞)【分析】依据等比数列的定义以及无穷等比数列求和公式,列出方程,即可求出的表达式,再利用求值域的方法求出其范围。【详解】由题意有,即,因,所以。【点睛】本题主要考查无穷等比数列求和公式的应用以及基本函数求值域的方法。12.设命题α:x>0,命题β:x>m,若α是β的充分条件,则实数m的取值范围是.参考答案:(﹣∞,0]【考点】必要条件、充分条件与充要条件的判断.【专题】数形结合;定义法;函数的性质及应用.【分析】根据不等式的关系结合充分条件的定义进行求解即可.【解答】解:若α是β的充分条件,则m≤0,故答案为:(﹣∞,0]【点评】本题主要考查充分条件和必要条件的应用,根据条件建立不等式关系是解决本题的关键.比较基础.13.函数的最大值为
参考答案:略14.不等式(2+1)()0的解集是____________________________.参考答案:15.若函数f(x)=(2)x2+(1)x+3是偶函数,则f(x)的单调递减区间是
.参考答案:16.终边在直线y=x上的角的集合是________.参考答案:{β|β=60°+k·180°,k∈Z}[如图,直线y=x过原点,倾斜角为60°,在0°~360°范围内,终边落在射线OA上的角是60°,终边落在射线OB上的角是240°,所以以射线OA,OB为终边的角的集合为:S1={β|β=60°+k·360°,k∈Z},S2={β|β=240°+k·360°,k∈Z},所以角β的集合S=S1∪S2={β|β=60°+k·360°,k∈Z}∪{β|β=60°+180°+k·360°,k∈Z}={β|β=60°+2k·180°,k∈Z}∪{β|β=60°+(2k+1)·180°,k∈Z}={β|β=60°+k·180°,k∈Z}.]17.若函数f(x)=4x3-ax+3的单调递减区间是,则实数a的值为
.参考答案:3三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数,且求;判断的奇偶性;试判断在上的单调性,并证明。参考答案:略19.若函数为奇函数,当时,(如图).(1)求函数的表达式,并补齐函数的图象;(2)用定义证明:函数在区间[1,+∞)上单调递增.参考答案:(1)任取,则由为奇函数,则综上所述,
(2)任取,且,则∵
∴又由,且,所以,∴∴,∴,即∴函数在区间上单调递增。
20.已知函数f(x)=2lg(x+1)和g(x)=lg(2x+t)(t为常数).(1)求函数f(x)的定义域;(2)若x∈[0,1]时,g(x)有意义,求实数t的取值范围.(3)若x∈[0,1]时,f(x)≤g(x)恒成立,求实数t的取值范围.参考答案:【考点】函数恒成立问题;函数的定义域及其求法.【专题】计算题.【分析】(1)根据对数函数要有意义可知真数大于0建立不等式关系,即可求出函数的定义域;(2)要使x∈[0,1]时,g(x)有意义,可转化成2x+t>0在[0,1]上恒成立,然后求出t的范围即可;(3)将2lg(x+1)≤lg(2x+t)在[0,1]上恒成立转化成(x+1)2≤2x+t即t≥x2+1在[0,1]上恒成立,然后求出x2+1在[0,1]上的最大值即可求出t的范围.【解答】解:(1)x+1>0即x>﹣1∴函数f(x)的定义域为(﹣1,+∞)(2)∵x∈[0,1]时,g(x)有意义∴2x+t>0在[0,1]上恒成立,即t>0∴实数t的取值范围是(0,+∞)(3)∵x∈[0,1]时,f(x)≤g(x)恒成立∴2lg(x+1)≤lg(2x+t)在[0,1]上恒成立即(x+1)2≤2x+tt≥x2+1在[0,1]上恒成立∴t≥2【点评】本题主要考查了对数函数定义域的求解,以及函数恒成立等有关问题,同时考查了转化的数学思想,属于中档题.21.设数列{an}的前n项和为Sn,且,在正项等比数列{bn}中,,.(1)求{an}和{bn}的通项公式;(2)设,求数列{cn}的前n项和.参考答案:(1)(2)试题分析:(1)由求出的通项公式,由等比数列的基本公式得到的通项公式;(2)利用错位相减法求出数列的前项和.试题解析:(1),令,,又数列为等比,,,又各项均为正,(2)由(1)得:,,点睛:用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“Sn-qSn”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.22.已知{an}是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16.(Ⅰ)求数列{an}的通项公式:(Ⅱ)若数列{an}和数列{bn}满足等式:an==(n为正整数),求数列{bn}的前n项和Sn.参考答案:【考点】8E:数列的求和;84:等差数列的通项公式.【分析】(1)将已知条件a3a6=55,a2+a7=16,利用等差数列的通项公式用首项与公差表示,列出方程组,求出首项与公差,进一步求出数列{an}的通项公式(2)将已知等式仿写出一个新等式,两个式子相减求出数列{bn}的通项,利用等比数列的前n项和公式求出数列{bn}的前n项和Sn.【解答】解(1)解:设等差数列{an}的公差为d,则依题设d>0由a2+a7=16.得2a1+7d=16①由a3?a6=55,得(a1+2d)(a1+5d)=55②由①得2a1=16﹣7d将其代入②得(16﹣3d)(16+3d)=220.即256﹣9d2=220∴d2=4,又d>0,∴d=2,代入①得a1=1∴an=1+(n﹣1)?
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年低洼地出租合同范本
- 2024年出售工地加工棚合同范本
- 2024年承接造型树基地合同范本
- 2024年骨科年终总结
- 医疗政策宣传
- 2024简易车辆租用合同(无租金)
- 2024至2030年中国辊印式饼干成型机数据监测研究报告
- 2024年致密熔铸合成云母陶瓷项目成效分析报告
- 2024至2030年中国超柔短毛绒面料数据监测研究报告
- 2024至2030年中国环保无铅微循环热风回流焊行业投资前景及策略咨询研究报告
- 英汉笔译智慧树知到答案2024年温州大学
- 2024年全国职业院校技能大赛高职组(智能节水系统设计与安装赛项)考试题库-下(多选、判断题)
- 2024信息咨询服务合同
- 2024新教科版一年级科学上册第二单元《我们自己》全部课件
- 2024至2030年中国岩土工程市场深度分析及发展趋势研究报告
- 双碳综合能源平台方案建设
- 2024年秋一年级上册8升国旗 公开课一等奖创新教学设计(表格式2课时)
- 【课件】纪念与象征-空间中的实体艺术+课件-高中美术人美版(2019)美术鉴赏
- 2024年广西应急厅事业单位笔试真题
- “十四五”期间推进智慧水利建设实施方案
- 七年级开学第一次家长会课件
评论
0/150
提交评论