下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Spark13DATAGURU专业数据分析Spark大数据快速计算平风 课程详 Spark大数据快速计算平风
DATAGURU专业数据分析RDD的编SparkSpark大数据快速计算平风
DATAGURU专业数据分析SparkSpark大数据快速计算平风
DATAGURU专业数据分析Driver
Ajarcontainingtheuser'sSparkapplication.Insomecasesuserswillwanttocreatean"uberjar"containingtheirapplicationalongwithitsdependencies.Theuser'sjarshouldneverincludeHadooporSparklibraries,however,thesewillbeaddedatTheprocessrunningthemain()functionoftheapplicationandcreatingtheCluster Anexternalserviceforacquiringresourcesonthecluster(e.g.standalonemanager,Mesos,Deploy Distinguisheswherethedriverprocessruns.In"cluster"mode,theframeworklaunchesthedriverinsideofthecluster."client"mode,thesubmitterlaunchesthedriveroutsideoftheWorker Anynodethatcanrunapplicationcodeinthe Aprocesslaunchedforanapplicationonaworkernode,thatrunstasksandkeepsdatainmemoryordiskstoragethem.Eachapplicationhasitsown Aunitofworkthatwillbesenttoone AparallelcomputationconsistingofmultipletasksthatgetsspawnedinresponsetoaSparkaction(e.g.save,collect);you'llseethistermusedinthedriver'slogs.EachjobgetsdividedintosmallerEachjobgetsdividedintosmallersetsoftaskscalledstagesthatdependoneachother(similartothemapandreducestagesinMapReduce);you'llseethistermusedinthedriver'slogs.DATAGURU专业数据分析SparkRDDSpark大数据快速计算平风
DATAGURU专业数据分析Spark编程模Spark大数据快速计算平风
DATAGURU专业数据分析RDDSpark大数据快速计算平风
DATAGURU专业数据分析描述scala>valmap1=rdd.map(_*3)res0:Array[Int]=Array(3,6,9,12,scala>valrddscala>valfiltered=res2:Array[String]=Array(jifeng,scala>valrdd=sc.parallelize(List("aaaddfdc","dcisfun"))scala>valfm=rdd.flatMap(str=>str.split(""))res3:Array[String]=Array(aa,ad,df,dc,dc,is,Spark大数据快速计算平风
DATAGURU专业数据分析描述reduceByKey(func,scala>valwd=fm.map(word=>(word,1))scala>wdnum.collect()Array[(String,Int)]=Array((aa,1),(is,1),(df,1),(dc,2),(ad,1),Array[(String,Int)]=Array((aa,1),(ad,1),(dc,2),(df,1),(fun,1),scala>valcntWrd=wdnum.map{case(word,count)=>(count,word)}scala>cntWrd.groupByKey().collect()Array[(Int,Iterable[String])]=Array(( pactBuffer(dc)),( pactBuffer(aa,is,df,ad,scala>fm.distinct().collect()Array[String]=Array(aa,is,df,dc,ad,Spark大数据快速计算平风
DATAGURU专业数据分析描述 scala>rdd.reduce(_+_)Int=scala>valrdd=rdd:Array[String]=Array(A,B,C,scala>rdd.count()Long=scala>rdd.take(3)Array[String]=Array(A,B,Spark大数据快速计算平风
DATAGURU专业数据分析描述scala>rdd.first()String=AScala>valrdd=scala>$ls//查看part-00000part-00001Spark大数据快速计算平风
DATAGURU专业数据分析描述Spark大数据快速计算平风
DATAGURU专业数据分析haRDhaRDRDaquet文件、Jh查询he注意Spark1.1使用registerTempTable代替1.0版本的Spark1.1在hiveContext中,hql()将被弃用,sql()将代替hql()来提交查询语句,统一了接口使用 表是一个临时表,生命周期只在所定义的sqlContext或hiveContext实例之中spark1.1提供了语法解析器选项spark.sql.dialect,目前有两种语法解析器,sql语法解析器和hiveql语法解析器sqlContext现在只支持sql语法解析器(SQL-92语法)hiveContext现在支持sql语法解析器和hivesql语法解析器,默认为hivesql语法解析器,用户可以通过配置切换成sql语法解析器Spark大数据快速计算平风
DATAGURU专业数据分析 [jifeng@feng03~]$mkdirhive[jifeng@feng03~]$cdhive/[jifeng@feng02hive]$tarzxfapache-hive-0.13.1-bin.tar.gz[jifeng@feng02hive]$lsSpark大数据快速计算平风
DATAGURU专业数据分析Hive[jifeng@feng03hive]$viexport2修改 下的文[jifeng@feng03conf]$perties.template[jifeng@feng02conf]$mvhive-env.sh.templatehive-env.sh[jifeng@feng02conf]$cphive-default.xml.templatehive-Spark大数据快速计算平风
DATAGURU专业数据分析Hive修改 下的文export[jifeng@feng02conf]$cd[jifeng@feng02bin]$vihive-#Defaulttouseexport"hive-config.sh"73L,2023CSpark大数据快速计算平风
DATAGURU专业数据分析Hive配置[jifeng@feng03conf]$vihive-<property><description>JDBCconnectstringforaJDBC <description>DriverclassnameforaJDBCSpark大数据快速计算平风
DATAGURU专业数据分析Hive<description>usernametouseagainstmetastore<description>passwordtouseagainstmetastoreSpark大数据快速计算平风
DATAGURU专业数据分析Hive启动[jifeng@feng02hadoop-2.6.0]$./sbin/start-启动[jifeng@feng03hive]$15/09/0516:31:10WARNconf.HiveConf:DEPRECATED:hive.metastore.ds.retry.*nolongerhasanyeffect.Usehive.hmshandler.retry.*insteadLogginginitializedusingconfigurationinjar:file:/home/jifeng/hive/apache-hive-0.13. hive>createdatabasesale;Timetaken:1.188Spark大数据快速计算平风
DATAGURU专业数据分析hive>createtableshop(locationid namestring)rowformatdelimitedfieldsterminatedbyexceptionwasthrownwhileadding/validatingclass(es):Specifiedkeywastoolong;maxkeylengthis767atatjava.lang.reflect.Constructor.newInstance(Constructor.java:526)atcom.mysql.jdbc.Util.getInstance(Util.java:360)mysql>alterdatabasehivecharactersetlatin1;QueryOK,1rowaffected(0.00sec)Spark大数据快速计算平风
DATAGURU专业数据分析hive>createtableshop(locationidint,name namestring)rowformatdelimitedfieldsterminatedby',';Timetaken:0.884hive>createtablesell(locationidint,fyearint,amountdouble,numdouble)rowformatdelimitedfieldsterminatedbyTimetaken:0.158hive>showtables;Timetaken:0.105seconds,Fetched:2row(s)Spark大数据快速计算平风
DATAGURU专业数据分析上传文件到jifeng@feng03hive]$hadoopfsputhome/jifeng/code/db/shop.txtuser/jifeng/fire/hive>loaddatainpath'/user/jifeng/fire/shop.txt'intotableshop;Loadingdatatotabledefault.shopTimetaken:0.657hive>loaddatainpath'/user/jifeng/fire/sell.txt'intotablesell;Loadingdatatotabledefault.sellTimetaken:0.38Spark大数据快速计算平风
DATAGURU专业数据分析Hivesupportisenabledbyaddingthe-Phiveand-Phive-thriftserverflagstoSpark’sConfigurationofHiveisdonebyplacingyourhive-site.xmlfileinspark-sql>select*fromshopwhere15/09/0516:54:52INFOscheduler.TaskSchedulerImpl:Addingtaskset2.0with2tasks15/09/0516:54:52INFOstorage.BlockManagerInfo:Addedbroadcast_3_piece0inmemoryon10:58340(size:35.2KB,free:267.2MB)15/09/0516:54:52INFOscheduler.TaskSetManager:Finishedtask0.0instage2.0(TID3)in574mson10(1/2)15/09/0516:54:53INFOscheduler.DAGScheduler:ResultStage2(processCmdatCliDriver.java:423)finishedin0.617s15/09/0516:54:53INFOscheduler.DAGScheduler:Job2finished:processCmdatCliDriver.java:423,took0.680182s Spark大数据快速计算平风
DATAGURU专业数据分析 importimportorg.apache.spark.sql.hive.HiveContextimportorg.apache.spark.mllib.linalg.VectorsvalsqlContext=newvalsqldata=sqlContext.sql("selectlocationid,sum(num)allnum,sum(amount)allamountfromsellgroupbylocationid")Spark大数据快速计算平风
DATAGURU专业数据分析valparsedData=sqldata.mapcaseRow(_,allnum,allamount)} valnumClusters=3valnumIterations=valmodel=KMeans.train(parsedData,numClusters,Spark大数据快速计算平风
DATAGURU专业数据分析valresult1=sqldata.map{caseRow(locationid,allnum,allamount)vallinevectore=Vectors.dense(features)valprediction=locationid+""+allnum+""+allamoun
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 道路用划线机市场需求与消费特点分析
- 2024年度体育场馆广告位租赁合同
- 自行车座套市场需求与消费特点分析
- 肥皂碟市场需求与消费特点分析
- 2024年度宁波住宅销售代理合同
- 04版特许经营合同许可范围与经营指导
- 2024年度珠宝首饰定制合同:设计定制与销售
- 04版股权转让合同书模板(04版)
- 2024年度智能交通管理系统采购合同
- 2024年度太阳能热水器安装工程维修合同
- 低钾血症的护理诊断及措施
- 高++中++语文《大卫+科波菲尔(节选)》课件++统编版高中语文选择性必修上册
- 2024年度产品代理合同:某制造商与代理商之间的年度产品代理协议
- 歌剧卡门课件教学课件
- 《新零售模式对企业营运资金管理影响探究:以小米公司为例》开题报告(有提纲)4900字
- 维护社会稳定规定
- 2024年河北承德热力集团招聘笔试参考题库含答案解析
- 软件测试项目课件04黑盒测试
- DB31-T 540-2022 重点单位消防安全管理要求
- 谈话提纲,中层及职工代表
- 《世界十大名牌》PPT课件.ppt
评论
0/150
提交评论