山西省运城市河东第一中学高二数学理月考试题含解析_第1页
山西省运城市河东第一中学高二数学理月考试题含解析_第2页
山西省运城市河东第一中学高二数学理月考试题含解析_第3页
山西省运城市河东第一中学高二数学理月考试题含解析_第4页
山西省运城市河东第一中学高二数学理月考试题含解析_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省运城市河东第一中学高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.某产品的广告费用x与销售额y的统计数据如下表:根据下表可得回归方程=x+中的为9.4,据此模型预报广告费用为6万元时销售额为广告费用x/万元4235销售额y/万元49263954、万元

、万元

、万元

、万元参考答案:B2.一个与球心距离为1的平面截球体所得的圆面面积为π,则球的体积为()A.π

B.π

C.π

D.8π参考答案:A略3.平面内有两定点A、B及动点P,设命题甲:“|PA|+|PB|是定值”,命题乙:“点P的轨迹是以A、B为焦点的椭圆”,则甲是乙的(

)A.充分不必要条件

B.必要不充分条件C.充要条件

D.既不充分也不必要条件参考答案:B4.如图所示,正三棱锥S-ABC,SB⊥AC,SB=AC=2,E、F分别是SC和AB的中点,则EF的长是() A.1

B.

C.

D.参考答案:B5.是虚数单位,复数=A.

B.

C.

D.参考答案:D略6.展开式中不含项的系数的和为(

)A.-1

B.0

C.1

D.2参考答案:B略7.设△ABC的三内角A、B、C成等差数列,sinA、sinB、sinC成等比数列,则这个三角形的形状是()A.直角三角形 B.钝角三角形C.等腰直角三角形 D.等边三角形参考答案:D【考点】数列与三角函数的综合;三角形的形状判断.【分析】先由△ABC的三内角A、B、C成等差数列,求得∠B=60°,∠A+∠C=120°①;再由sinA、sinB、sinC成等比数列,得sin2B=sinA?sinC,②,①②结合即可判断这个三角形的形状.【解答】解:∵△ABC的三内角A、B、C成等差数列,∴∠B=60°,∠A+∠C=120°①;又sinA、sinB、sinC成等比数列,∴sin2B=sinA?sinC=,②由①②得:sinA?sin(120°﹣A)=sinA?(sin120°cosA﹣cos120°sinA)=sin2A+?=sin2A﹣cos2A+=sin(2A﹣30°)+=,∴sin(2A﹣30°)=1,又0°<∠A<120°∴∠A=60°.故选D.【点评】本题考查数列与三角函数的综合,关键在于求得∠B=60°,∠A+∠C=120°,再利用三角公式转化,着重考查分析与转化的能力,属于中档题.8.若α、β是两个相交平面,则在下列命题中,真命题的序号为(

)①若直线m⊥α,则在平面β内,一定不存在与直线m平行的直线.②若直线m⊥α,则在平面β内,一定存在无数条直线与直线m垂直.③若直线m?α,则在平面β内,不一定存在与直线m垂直的直线.④若直线m?α,则在平面β内,一定存在与直线m垂直的直线.A.①③ B.②③ C.②④ D.①④参考答案:C【考点】命题的真假判断与应用.【专题】综合题;推理和证明.【分析】利用线面垂直的性质定理对四个命题分别分析解答.【解答】解:对于①,若直线m⊥α,如果α,β互相垂直,则在平面β内,存在与直线m平行的直线.故①错误;对于②,若直线m⊥α,则直线m垂直于平面α内的所有直线,则在平面β内,一定存在无数条直线与直线m垂直.故②正确;对于③,若直线m?α,则在平面β内,一定存在与直线m垂直的直线.故③错误;对于④,若直线m?α,则在平面β内,一定存在与直线m垂直的直线.故④正确;故选:C.【点评】本题考查了线面垂直的性质定理的运用判断直线的位置关系;关键是熟练运用定理,全面考虑.9.△ABC中,已知60°,如果△ABC两组解,则x的取值范围(

)A.

B.

C.

D.参考答案:C10.在四面体中,已知棱的长为,其余各棱长都为,则二面角的余弦值为(

)A.

B.

C.

D.参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.正方体中,与对角线异面的棱有

条;参考答案:612.直线关于直线对称的直线方程为

.参考答案:由于点关于直线的对称点位,直线关于直线对称的直线方程为,即.

13.某高校甲、乙、丙、丁四个专业分别有150、150、400、300名学生,为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生人数为

.参考答案:16【考点】分层抽样方法.【专题】概率与统计.【分析】根据四个专业各有的人数,得到本校的总人数,根据要抽取的人数,得到每个个体被抽到的概率,利用丙专业的人数乘以每个个体被抽到的概率,得到丙专业要抽取的人数.【解答】解:∵高校甲、乙、丙、丁四个专业分别有150、150、400、300名学生∴本校共有学生150+150+400+300=1000,∵用分层抽样的方法从该校这四个专业共抽取40名学生进行调查∴每个个体被抽到的概率是=,∵丙专业有400人,∴要抽取400×=16故答案为:16【点评】本题考查分层抽样方法,是一个基础题,解题的依据是在抽样过程中每个个体被抽到的概率是相等的,这种题目经常出现在高考卷中.14.离心率为的双曲线的渐近线方程为_______________.参考答案:∵双曲线的离心率为,即,令,则,故而可得,双曲线的渐近线方程为,即,故答案为.

15.已知为直线上的动点,,则的最小值为

.参考答案:4略16.观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49……照此规律,第个等式为

.参考答案:17.设,则的值为

.参考答案:-2略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分13分)如下图,给出了一个程序框图,其作用是输入的值,输出相应的的值,(I)请指出该程序框图所使用的逻辑结构;(Ⅱ)若视为自变量,为函数值,试写出函数的解析式;(Ⅲ)若要使输入的的值与输出的的值相等,则输入的值的集合为多少?

参考答案:I)程序框图所使用的逻辑结构是条件结构和顺序结构;………2分(Ⅱ)解析式为:…………ks5u…………7分(Ⅲ)依题意得,或,或,解得,或,故所求的集合为.……………………13分19.(本题满分10分)把函数的图像向右平移()个单

位,得到的函数的图像关于直线对称.

(1)求的最小值;(2)就的最小值求函数在区间上的值域。参考答案:(1)(2)(1)∴,它关于直线对称,∴

(2)由(1)知即的值域为20.(本小题14分)已知动圆P(圆心为点P)过定点A(1,0),且与直线相切,记动点P的轨迹为C.(1)求轨迹C的方程;(2)设过点P的直线l与曲线C相切,且与直线相交于点Q.试研究:在坐标平面内是否存在定点M,使得以为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.参考答案:21.某班同学利用五一节进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念,则称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:组数分组低碳族的人数占本组的频率1[25,30)1200.62[30,35)195P3[35,40)1000.54[40,45)a0.45[45,50)300.36[50,55)150.3(1)请补全频率分布直方图,并求n、a、p的值;(2)在所得样本中,从[40,50)岁年龄段的“低碳族”中采用分层抽样法抽取18人参加户外低碳体验活动,其中选取3人作为领队,记选取的3名领队中年龄在[40,45)岁的人数为X,求X的分布列和数学期望EX.参考答案:解:(Ⅰ)第二组的频率为1﹣(0.04+0.04+0.03+0.02+0.01)×5=0.3,所以高为.频率直方图如下:第一组的人数为,频率为0.04×5=0.2,所以.由题可知,第二组的频率为0.3,所以第二组的人数为1000×0.3=300,所以.第四组的频率为0.03×5=0.15,所以第四组的人数为1000×0.15=150,所以a=150×0.4=60.(Ⅱ)因为[40,45)岁年龄段的“低碳族”与[45,50)岁年龄段的“低碳族”的比值为60:30=2:1,所以采用分层抽样法抽取18人,[

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论