版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学必求其心得,业必贵于专精学必求其心得,业必贵于专精PAGE18学必求其心得,业必贵于专精PAGE1算法的基本思想学习目标1.了解算法的含义,体会算法的思想,能够用自然语言叙述算法.2。掌握正确的算法应满足的要求.3.学会将一整数分解成素因数之积,会设计求两整数的最大公因数的算法,了解“韩信点兵"问题及二分法求方程近似解.知识点一算法的概念思考有一碗酱油,一碗醋和一个空碗.现要把两碗盛的物品交换一下,试用自然语言表述你的操作方法.梳理一般地,算法是解决某类问题的一系列____________,只要按照这些步骤执行,都能使问题得到解决.一般来说,“用算法解决问题”都是可以利用________帮助完成的.同一个问题可能存在____种算法,一个算法也可以解决某一类问题.知识点二算法的特点思考设想一下电脑程序需要计算无限多步,会怎么样?梳理一般地,算法的特点有:(1)有穷性一个算法应包括________的操作步骤,能在执行有穷的操作步骤之后________.(2)确定性算法的计算规则及相应的计算步骤必须是唯一确定的.(3)可行性算法中的每一个步骤都是可以在________的时间内完成的基本操作,并能得到________的结果.类型一生活中的算法案例例1在电视台的某个娱乐节目中,要求参与者快速猜出物品价格.主持人出示了一台价值在1000元以内的随身听,并开始了竞猜.下面是主持人和参与者之间的一段对话:参与者:800元!主持人:高了!参与者:400元!主持人:低了!参与者:600元!主持人:低了!……试把参与者的竞猜策略概括成一系列的步骤.反思与感悟按照上述方法,继续判断,直到游戏结束.像这样的一系列步骤通常称为解决这个问题的一个算法.生活中有很多蕴含算法思想的案例.跟踪训练1一个大人和两个小孩一起渡河,渡口只有一条小船,每次只能渡1个大人或两个小孩,他们三人都会划船,但都不会游泳.试问他们怎样渡过河去?请写出一个渡河方案.类型二数学中的算法思想例2设计一个算法,求840与1764的最大公因数.反思与感悟以上这个算法的思想具有一般性,它可以帮助设计求三个或者三个以上正整数的最大公因数的算法.跟踪训练2设计一个算法,求98与63的最大公因数.例3“韩信点兵”问题韩信是汉高祖刘邦手下的大将,他英勇善战,智谋超群,为建立汉朝立下了汗马功劳.据说他在点兵的时候,为了保住军事机密,不让敌人知道自己部队的实力.采用下述点兵方法:先令士兵从1~3报数,结果最后一个士兵报2;再令士兵从1~5报数,结果最后一个士兵报3;又令士兵从1~7报数,结果最后一个士兵报4.这样,韩信很快就算出了自己部队士兵的总人数.请设计一个算法,求出士兵至少有多少人.反思与感悟在完成上述步骤后,就找到了所求的数53,这5个步骤称为解决“韩信点兵”问题的一个算法.跟踪训练3在例3中,我们颠倒一下3,5,7的顺序,请再设计一个算法.类型三用二分法求方程近似解例4求方程x3+x2-1=0在[0,1]上的近似解,精度为0.1.反思与感悟二分法求方程近似解的基本思想:逐渐缩小有解区间的长度,直到满足精度的要求.虽然看似烦琐,但很适合计算机执行.跟踪训练4用二分法设计一个求方程x2-2=0的近似正根的算法,精度为0。05.1.下列关于算法的说法,正确的个数为()①求解某一类问题的算法是唯一的;②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊;④算法执行后一定产生确定的结果.A.1B.2C.3D.42.已知一个算法:(1)给出三个数x、y、z;(2)计算M=x+y+z;(3)计算N=eq\f(1,3)M;(4)得出每次计算的结果.则上述算法是()A.求和 B.求余数C.求平均数 D.先求和再求平均数3.看下面的四段话,其中不是解决问题的算法是________.(1)从济南到北京旅游,先坐火车,再坐飞机抵达;(2)解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1;(3)方程x2-1=0有两个实根;(4)求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为15.4.已知直角三角形两直角边长为a,b,求斜边长c的一个算法分下列三步:(1)计算c=eq\r(a2+b2);(2)输入直角三角形两直角边长a,b的值;(3)输出斜边长c的值.其中正确的顺序是________.算法是建立在解法基础上的操作过程,算法不一定要有运算结果,答案可以由计算机解决,算法没有一个固定的模式,但有以下几个基本要求:(1)符合运算规则,计算机能操作;(2)每个步骤都有一个明确的计算任务;(3)对重复操作步骤返回处理;(4)步骤个数尽可能少;(5)每个步骤的语言描述要准确、简明.
答案精析问题导学知识点一思考先把醋倒入空碗,再把酱油倒入原来盛醋的碗,最后把倒入空碗中的醋倒入原来盛酱油的碗,就完成了交换.梳理步骤或程序计算机多知识点二思考若有无限步,必将陷入死循环,解决不了问题.故算法必须在有限步内解决问题.梳理(1)有限结束(3)有限确定题型探究例1解1.报出首次价格T1;2.根据主持人的回答确定价格区间:(1)若报价小于商品价格,则商品的价格区间为(T1,1000);(2)若报价大于商品价格,则商品的价格区间为(0,T1);(3)若报价等于商品价格,则游戏结束.3.如果游戏没有结束,则报出上面确定的价格区间的中点T2。跟踪训练1解1。两个小孩同船过河去;2.一个小孩划船回来;3.一个大人划船过河去;4.对岸的小孩划船回来;5.两个小孩同船渡过河去.例2解算法步骤如下:1.先将840进行素因数分解:840=23×3×5×7;2.然后将1764进行素因数分解:1764=22×32×72;3.确定它们的公共素因数:2,3,7;4.确定公共素因数的指数:公共素因数2,3,7的指数分别为2,1,1;5.最大公因数为22×31×71=84.跟踪训练2解算法步骤如下:1.先将98进行素因数分解:98=2×72;2.然后将63进行素因数分解:63=32×7;3.确定它们的公共素因数:7;4.确定公共素因数的指数:公共素因数的指数是1;5.最大公因数为7。例3解算法步骤如下:1.首先确定最小的满足除以3余2的正整数:2;2.依次加3就得到所有除以3余2的正整数:2,5,8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,…3.在上列数中确定最小的满足除以5余3的正整数:8;4.然后依次加上15,得到8,23,38,53,…不难看出,这些数既满足除以3余2,又满足除以5余3;5.在第4步得到的一列数中找出满足除以7余4的最小数53,这就是我们要求的数.跟踪训练3解算法步骤如下:1.首先确定最小的除以7余4的正整数:4;2.依次加7就得到所有除以7余4的正整数:4,11,18,25,32,39,46,53,60,…3.在第2步得到的一列数中确定最小的除以5余3的正整数:18;4.然后依次加上35,得到18,53,88,…5.在第4步得到的一列数中找出最小的满足除以3余2的正整数:53.例4解根据上述分析,可以通过下列步骤求得方程的近似解:设f(x)=x3+x2-1,1.因为f(0)=-1,f(1)=1,f(0)·f(1)〈0,则区间[0,1]为有解区间;2.取[0,1]的区间中点0.5;3.计算f(0.5)=-0。625;4.由于f(0.5)·f(1)<0,可得新的有解区间[0。5,1],1-0。5=0.5〉0.1;5.取[0。5,1]的区间中点0.75;6.计算f(0。75)=-0。015625;7.由于f(0.75)·f(1)<0,可得新的有解区间[0。75,1],1-0.75=0。25〉0。1;8.取[0.75,1]的区间中点0。875;9.计算f(0。875)=0.435546875;10.由于f(0.75)·f(0.875)<0,可得新的有解区间[0。75,0。875],0.875-0.75=0.125〉0。1;11.取[0.75,0。875]的区间中点0.8125;12.计算f(0。8125)=0。196533203125;13.由于f(0。75)·f(0。8125)〈0,可得新的有解区间[0.75,0。8125],0.8125-0.75=0。0625〈0。1.所以,区间[0。75,0。8125]中的任一数值,都可以作为方程的近似解.跟踪训练4解1.因为f(1)=-1,f(2)=2,f(1)·f(2)<0,则区间[1,2]为有解区间,精度2-1=1〉0.05;2.取[1,2]的中点1。5;3.计算f(1.5)=0.25;4.由于f(1)·f(1。5)<0,可得新的有解区间[1,1。5],精度1.5-1=0.5>0.05;5.取[1,1.5]的中点1。25;6.计算f(1.25)=-0。4375;7.由于f(1。25)·f(1。5)<0,可得新的有解区间[1.25,1。5],精度1.5-1.25=0。25>0。05;…当得到新的有解区间[1。40625,1.4375]时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年来宾货运从业资格证怎么考
- 2025年太原经营性道路客货运输驾驶员从业资格考试
- 以创新为引擎的农业技术转移与推广策略
- 2025年海南货运从业资格试题及答案大全
- 2025年拉萨货运从业资格证模拟考试试题及答案解析
- 企业机械的预防性维护计划与实践
- 初中化学实验操作基础技能与高级应用培训成果汇报
- 2017-2022年中国电力巡线无人机行业市场发展深度调查及投资战略可行性报告(目录)
- 创新教育与商业创新的紧密联系
- 办公区域家具的定期清洁与维护
- 中考数学真题变式题库
- FZ/T 91019-1998染整机械导布辊制造工艺规范
- FZ/T 52025-2012再生有色涤纶短纤维
- SHSG0522003 石油化工装置工艺设计包(成套技术)内容规定
- FMEA-培训教材-汽车fmea培训课件
- 制造部年终总结报告课件
- 粤科版高中通用技术选修1:电子控制技术全套课件
- 知识产权法(英文) Intellectual Property Right Law课件
- 热力管道焊接技术交底记录大全
- 接地装置安装试验记录
- 各级医院健康体检中心基本标准(2019年版)
评论
0/150
提交评论