2023年保定职业技术学院高职单招(数学)试题库含答案解析_第1页
2023年保定职业技术学院高职单招(数学)试题库含答案解析_第2页
2023年保定职业技术学院高职单招(数学)试题库含答案解析_第3页
2023年保定职业技术学院高职单招(数学)试题库含答案解析_第4页
2023年保定职业技术学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩40页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年保定职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.如图,在Rt△ABC中,已知∠ABC=90°,BC=6,以AB为直径作⊙O,连接OC,过点C作⊙O的切线CD,D为切点,若sin∠OCD=45,则直径AB=______.答案:连接OD,则OD⊥CD.∵∠ABC=90°,∴CD、CB为⊙O的两条切线.∴根据切线长定理得:CD=BC=6.在Rt△OCD中,sin∠OCD=45,∴tan∠OCD=43,OD=tan∠OCD×CD=8.∴AB=2OD=16.故为16.2.已知A(1,2),B(-3,b)两点的距离等于42,则b=______.答案:∵A(1,2),B(-3,b)∴|AB|=(-3-1)2+(b-2)2=42,解之得b=6或-2故为:6或-23.例3.设a>0,b>0,解关于x的不等式:|ax-2|≥bx.答案:原不等式|ax-2|≥bx可化为ax-2≥bx或ax-2≤-bx,(1)对于不等式ax-2≤-bx,即(a+b)x≤2

因为a>0,b>0即:x≤2a+b.(2)对于不等式ax-2≥bx,即(a-b)x≥2①当a>b>0时,由①得x≥2a-b,∴此时,原不等式解为:x≥2a-b或x≤2a+b;当a=b>0时,由①得x∈ϕ,∴此时,原不等式解为:x≤2a+b;当0<a<b时,由①得x≤2a-b,∴此时,原不等式解为:x≤2a+b.综上可得,当a>b>0时,原不等式解集为(-∞,2a+b]∪[2a-b,+∞),当0<a≤b时,原不等式解集为(-∞,2a+b].4.(选做题)(几何证明选讲选做题)如图,直角三角形ABC中,∠B=90°,AB=4,以BC为直径的圆交AC边于点D,AD=2,则∠C的大小为______.答案:∵∠B=90°,AB=4,BC为圆的直径∴AB与圆相切,由切割线定理得,AB2=AD?AC∴AC=8故∠C=30°故为:30°5.已知|a|=8,e是单位向量,当它们之间的夹角为π3时,a在e方向上的投影为()A.43B.4C.42D.8+23答案:由两个向量数量积的几何意义可知:a在e方向上的投影即:a?e=|a||e|cosπ3=8×1×12=4故选B6.在空间四边形OABC中,OA+AB-CB等于()A.OAB.ABC.OCD.AC答案:根据向量的加法、减法法则,得OA+AB-CB=OB-CB=OB+BC=OC.故选C.7.若矩阵A=

72

69

67

65

62

59

81

74

68

64

59

52

85

79

76

72

69

64

228

219

211

204

195

183

是表示我校2011届学生高二上学期的期中成绩矩阵,A中元素aij(i=1,2,3,4;j=1,2,3,4,5,6)的含义如下:i=1表示语文成绩,i=2表示数学成绩,i=3表示英语成绩,i=4表示语数外三门总分成绩j=k,k∈N*表示第50k名分数.若经过一定量的努力,各科能前进的名次是一样的.现小明的各科排名均在250左右,他想尽量提高三门总分分数,那么他应把努力方向主要放在哪一门学科上()

A.语文

B.数学

C.外语

D.都一样答案:B8.设四边形ABCD中,有DC=12AB,且|AD|=|BC|,则这个四边形是

______.答案:由DC=12AB知四边形ABCD是梯形,又|AD|=|BC|,即梯形的对角线相等,所以,四边形ABCD是等腰梯形.故为:等腰梯形.9.已知直线3x+2y-3=0和6x+my+1=0互相平行,则它们之间的距离是()

A.

B.

C.

D.答案:B10.如图,CD是⊙O的直径,AE切⊙O于点B,连接DB,若∠D=20°,则∠DBE的大小为()

A.20°

B.40°

C.60°

D.70°答案:D11.已知|a=2,|b|=1,a与b的夹角为60°,求向量.a+2b与2a+b的夹角.答案:由题意得,a?b=2×1×12=1,∴(a+2b)?(2a+b)=2a2+5a?b+2b2=15,|a+2b|=a2+4a?b+4b2=23,|2a+b|=4a2+4a?b+b2=21,设a+2b与2a+b夹角为θ,则cosθ=(a+2b)?(2a+b)|a+2b||2a+b|=1523×21=5714,则θ=arccos571412.如图,在平行四边形OABC中,点C(1,3).

(1)求OC所在直线的斜率;

(2)过点C做CD⊥AB于点D,求CD所在直线的方程.答案:(1)∵点O(0,0),点C(1,3),∴OC所在直线的斜率为kOC=3-01-0=3.(2)在平行四边形OABC中,AB∥OC,∵CD⊥AB,∴CD⊥OC.∴CD所在直线的斜率为kCD=-13.∴CD所在直线方程为y-3=-13(x-1),即x+3y-10=0.13.在三棱锥O-ABC中,M,N分别是OA,BC的中点,点G是MN的中点,则OG可用基底{OA,OB,OC}表示成:OG=______.答案:如图,连接ON,在△OBC中,点N是BC中点,则由平行四边形法则得ON=12(OB+OC)在△OMN中,点G是MN中点,则由平行四边形法则得OG=12(OM+ON)=12OM+12ON=14OA+12•12(OB+OC)14(OA+OB+OC),故为:14(OA+OB+OC).14.(Ⅰ)已知z∈C,且|z|-i=.z+2+3i(i为虚数单位),求复数z2+i的虚部.

(Ⅱ)已知z1=a+2i,z2=3-4i(i为虚数单位),且z1z2为纯虚数,求实数a的值.答案:(Ⅰ)设z=x+yi,代入方程|z|-i=.z+2+3i,得出x2+y2-i=x-yi+2+3i=(x+2)+(3-y)i,故有x2+y2=x+23-y=-1,解得x=3y=4,∴z=3+4i,复数z2+i=3+4i2+i=2+i,虚部为1(Ⅱ)z1z2=a+2i3-4i=3a-8+(4a+6)i25,且z1z2为纯虚数则3a-8=0,且4a+6≠0,解得a=8315.已知x与y之间的一组数据:

x

0

1

2

3

y

2

4

6

8

则y与x的线性回归方程为y=bx+a必过点()

A.(1.5,4)

B.(1.5,5)

C.(1,5)

D.(2,5)答案:B16.用样本估计总体,下列说法正确的是()A.样本的结果就是总体的结果B.样本容量越大,估计就越精确C.样本容量越小,估计就越精确D.样本的方差可以近似地反映总体的平均状态答案:用样本估计总体时,样本容量越大,估计就越精确,样本的平均值可以近似地反映总体的平均状态,样本的标准差可以近似地反映总体的波动状态,数据的方差越大,说明数据越不稳定,样本的结果可以粗略的估计总体的结果,但不就是总体的结果.故选B.17.已知直线l:(t为参数)的倾斜角是()

A.

B.

C.

D.答案:D18.双曲线的中心在坐标原点,离心率等于2,一个焦点的坐标为(2,0),则此双曲线的渐近线方程是______.答案:∵离心率等于2,一个焦点的坐标为(2,0),∴ca=2,

c=2且焦点在x轴上,∴a=1∵c2=a2+b2∴b2=3∴b=3.所以双曲线的渐进方程为y=±3x.故为y=±3x19.关于如图所示几何体的正确说法为______.

①这是一个六面体;

②这是一个四棱台;

③这是一个四棱柱;

④这是一个四棱柱和三棱柱的组合体;

⑤这是一个被截去一个三棱柱的四棱柱.答案:①因为有六个面,属于六面体的范围,②这是一个很明显的四棱柱,因为侧棱的延长线不能交与一点,所以不正确.③如果把几何体放倒就会发现是一个四棱柱,④可以有四棱柱和三棱柱组成,⑤和④的想法一样,割补方法就可以得到.故为:①③④⑤.20.下列各组集合,表示相等集合的是()

①M={(3,2)},N={(2,3)};

②M={3,2},N={2,3};

③M={(1,2)},N={1,2}.A.①B.②C.③D.以上都不对答案:①中M中表示点(3,2),N中表示点(2,3);②中由元素的无序性知是相等集合;③中M表示一个元素,即点(1,2),N中表示两个元素分别为1,2.所以表示相等的集合是②.故选B.21.用数学归纳法证明:“1×4+2×7+3×10+…+n(3n+1)=n(n+1)2,n∈N+”,当n=1时,左端为______.答案:在等式:“1×4+2×7+3×10+…+n(3n+1)=n(n+1)2,n∈N+”中,当n=1时,3n+1=4,而等式左边起始为1×4的连续的正整数积的和,故n=1时,等式左端=1×4=4故为:4.22.如图是用来求2+32+43+54+…+101100的计算程序,请补充完整:______.

答案:2+32+43+54+…+101100=(1+1)+(1+12)+(1+13)+…+(1+1100)故循环体中应是S=S+(1+1i)故为:S=S+(1+1i)23.若方程x2+y2+kx+2y+k2-11=0表示的曲线是圆,则实数k的取值范围是______.如果过点(1,2)总可以作两条直线和圆x2+y2+kx+2y+k2-11=0相切,则实数k的取值范围是______.答案:方程x2+y2+kx+2y+k2-11=0即(x+k2)2+(y+1)2=48-3k24,由于它表示的曲线是圆,∴48-3k24>0,解得-4<k<4.圆x2+y2+kx+2y+k2-11=0即(x+k2)2+(y+1)2=48-3k24.如果过点(1,2)总可以作两条直线和圆x2+y2+kx+2y+k2-11=0相切,则点(1,2)一定在圆x2+y2+kx+2y+k2-11=0的外部,∴48-3k24>0,且(1+k2)2+(2+1)2>48-3k24.解得-4<k<-2,或1<k<4.故为:(-4,4),(-4,-2)∪(1,4).24.已知A(1,0,0)、B(0,1,0)、C(0,0,1)三点,n=(1,1,1),则以n为方向向量的直线l与平面ABC的关系是()A.垂直B.不垂直C.平行D.以上都有可能答案:由题意,AB=(-1,1,0),BC=(0,-1,1)∵n•AB=0,n•BC=0∴以n为方向向量的直线l与平面ABC垂直故选A.25.把函数y=ex的图像按向量=(2,3)平移,得到y=f(x)的图像,则f(x)=(

A.ex+2+3

B.ex+2-3

C.ex-2+3

D.ex-2-3答案:C26.在等腰直角三角形ABC中,若M是斜边AB上的点,则AM小于AC的概率为()A.14B.12C.22D.32答案:记“AM小于AC”为事件E.在线段AB上截取,则当点M位于线段AC内时,AM小于AC,将线段AB看做区域D,线段AC看做区域d,于是AM小于AC的概率为:ACAB=22.故选C.27.将某班的60名学生编号为:01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是______.答案:用系统抽样抽出的5个学生的号码从小到大成等差数列,随机抽得的一个号码为04则剩下的四个号码依次是16、28、40、52.故为:16、28、40、5228.点P,设△ABC的面积是△PBC的面积的m倍,那么m=()

A.1

B.

C.4

D.2答案:B29.长为3的线段AB的端点A、B分别在x轴、y轴上移动,,则点C的轨迹是()

A.线段

B.圆

C.椭圆

D.双曲线答案:C30.已知a,b是非零向量,且a,b夹角为π3,则向量p=a丨a丨+b丨b丨的模为______.答案:∵|a|a||=|a||a|=1=|b|b||,a?b=|a|

|b|cosπ3=12|a|

|b|∴p2=|(a|a|+b|b|)2=1+1+2?a|a|?b|b|=2+2×12=3,∴|p|=3.故为3.31.已知两定点F1(5,0),F2(-5,0),曲线C上的点P到F1、F2的距离之差的绝对值是8,则曲线C的方程为()A.x29-y216=1B.x216-y29=1C.x225-y236=1D.y225-x236=1答案:据双曲线的定义知:P的轨迹是以F1(5,0),F2(-5,0)为焦点,以实轴长为8的双曲线.所以c=5,a=4,b2=c2-a2=9,所以双曲线的方程为:x216-y29=1故选B32.(难线性运算、坐标运算)已知0<x<1,0<y<1,求M=x2+y2+x2+(1-y)2+(1-x)2+y2+(1-x)2+(1-y)2的最小值.答案:设A(0,0),B(1,0),C(1,1),D(0,1),P(x,y),则M=|PA|+|PD|+|PB|+|PC|=(|PA|+|PC|)+(|PB|+|PD|)=(|AP|+|PC|)+(|BP|+|PD|)≥|AP+PC|+|BP+PD|=|AC|+|BD|.而AC=(1,1),BD=(-1,1),得|AC|+|BD|=2+2=22.∴M≥22,当AP与PC同向,BP与PD同向时取等号,设PC=λAP,PD=μBP,则1-x=λx,1-y=λy,-x=μx-μ,1-y=μy,解得λ=μ=1,x=y=12.所以,当x=y=12时,M的最小值为22.33.已知二阶矩阵A=2ab0属于特征值-1的一个特征向量为1-3,求矩阵A的逆矩阵.答案:由矩阵A属于特征值-1的一个特征向量为α1=1-3,可得2ab01-3=-1-3,得2-3a=-1b=3即a=1,b=3;

…(3分)解得A=2130,…(8分)∴A逆矩阵是A-1=dad-bc-bad-bc-cad-bcaad-bc=0131-23.34.设集合A={(x,y)|x+y=6,x∈N,y∈N},使用列举法表示集合A.答案:集合A中的元素是点,点的横坐标,纵坐标都是自然数,且满足条件x+y=6.所以用列举法表示为:A={(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}.35.某处有供水龙头5个,调查表明每个水龙头被打开的可能性为,随机变量ξ表示同时被打开的水龙头的个数,则P(ξ=3)为A.0.0081B.0.0729C.0.0525D.0.0092答案:A解析:本题考查n次独立重复试验中,恰好发生k次的概率.对5个水龙头的处理可视为做5次试验,每次试验有2种可能结果:打开或未打开,相应的概率为0.1或1-0.1="0.9."根据题意ξ~B(5,0.1),从而P(ξ=3)=(0.1)3(0.9)2=0.0081.36.已知、分别是与x轴、y轴方向相同的单位向量,且=-3+6,=-6+4,=--6,则一定共线的三点是()

A.A,B,C

B.A,B,D

C.A,C,D

D.B,C,D答案:C37.已知指数函数f(x)=ax(a>0且a≠1)过点(3,8),求f(4)=______.答案:设指数函数为y=ax(a>0且a≠1)将(3,8)代入得8=a3解得a=2,所以y=2x,则f(4)=42=16故为16.38.若a,b∈R,求证:≤+.答案:证明略解析:证明

当|a+b|=0时,不等式显然成立.当|a+b|≠0时,由0<|a+b|≤|a|+|b|≥,所以=≤=≤+.39.(1)用红、黄、蓝、白四种不同颜色的鲜花布置如图一所示的花圃,要求同一区域上用同一种颜色鲜花,相邻区域用不同颜色鲜花,问共有多少种不同的摆放方案?

(2)用红、黄、蓝、白、橙五种不同颜色的鲜花布置如图二所示的花圃,要求同一区域上用同一种颜色鲜花,相邻区域使用不同颜色鲜花.

①求恰有两个区域用红色鲜花的概率;

②记花圃中红色鲜花区域的块数为S,求它的分布列及其数学期望E(S).

答案:(1)根据分步计数原理,摆放鲜花的不同方案有:4×3×2×2=48种(2)①设M表示事件“恰有两个区域用红色鲜花”,如图二,当区域A、D同色时,共有5×4×3×1×3=180种;当区域A、D不同色时,共有5×4×3×2×2=240种;因此,所有基本事件总数为:180+240=420种.(由于只有A、D,B、E可能同色,故可按选用3色、4色、5色分类计算,求出基本事件总数为A53+2A51+A55=420种)它们是等可能的.又因为A、D为红色时,共有4×3×3=36种;B、E为红色时,共有4×3×3=36种;因此,事件M包含的基本事件有:36+36=72种.所以,P(M)=72420=635②随机变量ξ的分布列为:ξ012P6352335635所以,E(ξ)=0×635+1×2335+2×635=140.命题“若a>3,则a>5”的逆命题是______.答案:∵原命题“若a>3,则a>5”的条件是a>3,结论是a>5∴逆命题是“若a>5,则a>3”故为:若a>5,则a>341.已知直线ax+by+c=0(abc≠0)与圆x2+y2=1相切,则三条边长分别为|a|、|b|、|c|的三角形()

A.是锐角三角形

B.是直角三角形

C.是钝角三角形

D.不存在答案:B42.若向量=(2,-3,1),=(2,0,3),=(0,2,2),则(+)=()

A.4

B.15

C.7

D.3答案:D43.求证:若圆内接五边形的每个角都相等,则它为正五边形.答案:证明:设圆内接五边形为ABCDE,圆心是O.连接OA,OB,OCOD,OE,可得五个三角形∵OA=OB=OC=OD=OE=半径,∴有五个等腰三角形在△OAB、△OBC、△OCD、△ODE、△OEA中则∠OAB=∠OBA,∠OBC=∠OCB,∠OCD=∠ODC,∠ODE=∠OED,∠OEA=∠OAE因为所有内角相等,所以∠OAE+∠OAB=∠OBA+∠OBC,所以∠OAE=∠OBC同理证明∠OBA=∠OCD,∠OCB=∠OED,∠ODC=∠OEA,∠OED=∠OAB则△OAB、△OBC、△OCD、△ODE、△OEA中,∠AOB=∠BOC=∠COD=∠DOE=∠EOA∴△OAB≌△OBC≌△OCD≌△ODE≌△OEA

(SAS边角边定律)∴AB=BC=CD=DE=EA∴五边形ABCDE为正五边形44.选做题

已知抛物线,过原点O直线与交于两点。

(1)求的最小值;

(2)求的值答案:解:设直线的参数方程为与抛物线方程

联立得45.求圆Cx=3+4cosθy=-2+4sinθ(θ为参数)的圆心坐标,和圆C关于直线x-y=0对称的圆C′的普通方程.答案:圆Cx=3+4cosθy=-2+4sinθ(θ为参数)

(x-3)2+(y+2)2=16,表示圆心坐标(3,-2),半径等于4的圆.C(3,-2)关于直线x-y=0对称的点C′(-2,3),半径还是4,故圆C′的普通方程(x+2)2+(y-3)2=16.46.(坐标系与参数方程)

从极点O作直线与另一直线ρcosθ=4相交于点M,在OM上取一点P,使OM•OP=12.

(1)求点P的轨迹方程;

(2)设R为直线ρcosθ=4上任意一点,试求RP的最小值.答案:(1)设动点P的坐标为(ρ,θ),M的坐标为(ρ0,θ),则ρρ0=12.∵ρ0cosθ=4,∴ρ=3cosθ即为所求的轨迹方程.(2)由(1)知P的轨迹是以(32,0)为圆心,半径为32的圆,而直线l的解析式为x=4,所以圆与x轴的交点坐标为(3,0),易得RP的最小值为147.已知圆的方程是(x-2)2+(y-3)2=4,则点P(3,2)满足()

A.是圆心

B.在圆上

C.在圆内

D.在圆外答案:C48.某项考试按科目A、科目B依次进行,只有当科目A成绩合格时,才可继续参加科目B的考试.已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书.现某人参加这项考试,科目A每次考试成绩合格的概率均为23,科目B每次考试成绩合格的概率均为12.假设各次考试成绩合格与否均互不影响.

(Ⅰ)求他不需要补考就可获得证书的概率;

(Ⅱ)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为ξ,求ξ的数学期望Eξ.答案:设“科目A第一次考试合格”为事件A1,“科目A补考合格”为事件A2;“科目B第一次考试合格”为事件B1,“科目B补考合格”为事件B2.(Ⅰ)不需要补考就获得证书的事件为A1?B1,注意到A1与B1相互独立,根据相互独立事件同时发生的概率可得P(A1?B1)=P(A1)×P(B1)=23×12=13.即该考生不需要补考就获得证书的概率为13.(Ⅱ)由已知得,ξ=2,3,4,注意到各事件之间的独立性与互斥性,根据相互独立事件同时发生的概率可得P(ξ=2)=P(A1?B1)+P(.A1?.A2)=23×12+13×13=13+19=49.P(ξ=3)=P(A1?.B1?B2)+P(A1?.B1?.B2)+P(.A1?A2?B2)=23×12×12+23×12×12+13×23×12=16+16+19=49,P(ξ=4)=P(.A1?A2?.B2?B2)+P(.A1?A2?.B1?.B2)=13×23×12×12+13×23×12×12=118+118=19,∴Eξ=2×49+3×49+4×19=83.即该考生参加考试次数的数学期望为83.49.某校在检查学生作业时,抽出每班学号尾数为4的学生作业进行检查,这里主要运用的抽样方法是()

A.分层抽样

B.抽签抽样

C.随机抽样

D.系统抽样答案:D50.用数学归纳法证明:

对于一切n∈N*,都有(12+1)+(22+2)+…+(n2+n)=n(n+1)(n+2)3.答案:证明:(1)当n=1时,左边=12+1=2,右边=1×2×33=2,所以当n=1时,命题成立;

…(2分)(2)设n=k时,命题成立,即有(12+1)+(22+2)+…+(k2+k)=k(k+1)(k+2)3…(4分)则当n=k+1时,左边=(12+1)+(22+2)+…+(k2+k)+[(k+1)2+(k+1)]…(5分)=k(k+1)(k+2)3+[(k+1)2+(k+1)]=(k+1)[k(k+2)+3(k+1)+3]3…(8分)=(k+1)(k2+5k+6)3=(k+1)(k+2)(k+3)3=(k+1)[(k+1)+1][(k+1)+2]3…(10分)所以当n=k+1时,命题成立.综合(1)(2)得:对于一切n∈N*,都有(12+1)+(22+2)+…+(n2+n)=n(n+1)(n+2)3…(12分)第2卷一.综合题(共50题)1.在平行六面体ABCD-A′B′C′D′中,向量是()

A.有相同起点的向量

B.等长的向量

C.共面向量

D.不共面向量答案:C2.某公司招聘员工,经过笔试确定面试对象人数,面试对象人数按拟录用人数分段计算,计算公式为y=4x1≤x≤102x+1010<x≤1001.5xx>100其中x代表拟录用人数,y代表面试对象人数.若应聘的面试对象人数为60人,则该公司拟录用人数为()A.15B.40C.25D.130答案:由题意知:当10<x≤100时,y=2x+10∈(30,210],又因为60∈(30,210],∴2x+10=60,∴x=25.故:该公司拟录用人数为25人.故选C.3.底面直径和高都是4cm的圆柱的侧面积为______cm2.答案:∵圆柱的底面直径和高都是4cm,∴圆柱的底面圆的周长是2π×2=4π∴圆柱的侧面积是4π×4=16π,故为:16π.4.函数f(x)=ax+loga(x+1)在[0,1]上的最大值和最小值之和为a,则a的值为

______.答案:∵y=ax与y=loga(x+1)具有相同的单调性.∴f(x)=ax+loga(x+1)在[0,1]上单调,∴f(0)+f(1)=a,即a0+loga1+a1+loga2=a,化简得1+loga2=0,解得a=12故为:125.如图所示,图中线条构成的所有矩形中(由6个小的正方形组成),其中为正方形的概率为

______.答案:它的长有10种取法,由长与宽的对称性,得到它的宽也有10种取法;因为,长与宽相互独立,所以得到长X宽的个数有:10X10=100个即总的矩形的个数有:100个长=宽的个数为:(1X1的正方形的个数)+(2X2的正方形个数)+(3X3的正方形个数)+(4X4的正方形个数)=16+9+4+1=30个即正方形的个数有:30个所以为正方形的概率是30100=0.3故为0.36.设空间两个不同的单位向量

a=(x1,y1,0),

b=(x2,y2,0)与向量

c=(1,1,1)的夹角都等于45°.

(1)求x1+y1和x1y1的值;

(2)求<

a,

b>的大小.答案:(1)∵单位向量a=(x1,y1,0)与向量c=(1,1,1)的夹角等于45°∴|a|=x21+y21=1,cos45°=a?

c|a|?

|c|=13(x1+y1)=22∴x1+y1=62,x1?y1=-14(2)同理可知x2+y2=22,x2?y2=-14∴x1?x2=-14,y1?y2=-14cos<a,b>=a?b|a|?|b|=x1?x2+y1?y2=-12∴<a,b>=120°7.己知集合A={1,2,3,k},B={4,7,a4,a2+3a},且a∈N*,x∈A,y∈B,使B中元素y=3x+1和A中的元素x对应,则a=______,k=______.答案:若x∈A,y∈B,使B中元素y=3x+1和A中的元素x对应,则当x=1时,y=4;当x=2时,y=7;当x=3时,y=10;当x=k时,y=3k+1;又由a∈N*,∴a4≠10,则a2+3a=10,a4=3k+1解得a=2,k=5故为:2,58.在统计中,样本的标准差可以近似地反映总体的()

A.平均状态

B.频率分布

C.波动大小

D.最大值和最小值答案:C9.已知复数z0=1-mi(m>0),z=x+yi和,其中x,y,x',y'均为实数,i为虚数单位,且对于任意复数z,有w=.z0•.z,|w|=2|z|.

(Ⅰ)试求m的值,并分别写出x'和y'用x、y表示的关系式:

(Ⅱ)将(x、y)用为点P的坐标,(x'、y')作为点Q的坐标,上述关系式可以看作是坐标平面上点的一个变换:它将平面上的点P变到这一平面上的点Q.已知点P经该变换后得到的点Q的坐标为(3,2),试求点P的坐标;

(Ⅲ)若直线y=kx上的任一点经上述变换后得到的点仍在该直线上,试求k的值.答案:(I)由题设得,|w|=|.z0•.z|=|z0||z|=2|z|,∴|z0|=2,由1+m2=4,且m>0,得m=3,∴z0=1-3i,∵w=.z0•.z,∴x′+y′i=.(1-3i)•.(x+yi))=(1+3i)(x-yi)=x+3y+(3x-y)i,由复数相等得,x′=x+3yy′=3x-y,(Ⅱ)由(I)和题意得,x+3y=33x-y=2,解得x=343y=14

,即P点的坐标为(343,14).

(Ⅲ)∵直线y=kx上的任意点P(x,y),其经变换后的点Q(x+3y,3x-y)仍在该直线上,∴3x-y=k(x+3y),即(3k+1)y=(3-k)x∵当k=0时,y=0,y=3x不是同一条直线,∴k≠0,于是3k+11=3-kk,即3k2+2k-3=0,解得k=33或k=-310.在空间坐标中,点B是A(1,2,3)在yOz坐标平面内的射影,O为坐标原点,则|OB|等于()

A.

B.

C.2

D.答案:B11.已知抛物线方程为y2=2px(p>0),过该抛物线焦点F且不与x轴垂直的直线AB交抛物线于A,B两点,过点A,点B分别作AM,BN垂直于抛物线的准线,分别交准线于M,N两点,那么∠MFN必是()

A.锐角

B.直角

C.钝角

D.以上皆有可能答案:B12.设A(3,4),在x轴上有一点P(x,0),使得|PA|=5,则x等于()

A.0

B.6

C.0或6

D.0或-6答案:C13.已知a=4,b=1,焦点在x轴上的椭圆方程是(

A.

B.

C.

D.答案:C14.已知函数f(x)=f(x+1)(x<4)2x(x≥4),则f(log23)=______.答案:因为1<log23<2,所以4<log23+3<5,所以f(log23)=f(log23+3)=f(log224)=2log224=24.故为:24.15.已知x,y的取值如下表所示:

x0134y2.24.34.86.7从散点图分析,y与x线性相关,且y^=0.95x+a,以此预测当x=2时,y=______.答案:∵从所给的数据可以得到.x=0+1+3+44=2,.y=2.2+4.3+4.8+6.74=4.5∴这组数据的样本中心点是(2,4.5)∴4.5=0.95×2+a,∴a=2.6∴线性回归方程是y=0.95x+2.6,∴预测当x=2时,y=0.95×2+2.6=4.5故为:4.516.命题“存在x0∈R,使x02+1<0”的否定是______.答案:∵命题“存在x0∈R,使x02+1<0”是一个特称命题∴命题“存在x0∈R,使x02+1<0”的否定是“对任意x0∈R,使x02+1≥0”故为:对任意x0∈R,使x02+1≥017.求证:菱形各边中点在以对角线的交点为圆心的同一个圆上.答案:已知:如图,菱形ABCD的对角线AC和BD相交于点O.求证:菱形ABCD各边中点M、N、P、Q在以O为圆心的同一个圆上.证明:∵四边形ABCD是菱形,∴AC⊥BD,垂足为O,且AB=BC=CD=DA,而M、N、P、Q分别是边AB、BC、CD、DA的中点,∴OM=ON=OP=OQ=12AB,∴M、N、P、Q四点在以O为圆心OM为半径的圆上.所以菱形各边中点在以对角线的交点为圆心的同一个圆上.18.设ai∈R+,xi∈R+,i=1,2,…n,且a12+a22+…an2=1,x12+x22+…xn2=1,则a1x1,a2x2,…,anxn的值中,现给出以下结论,其中你认为正确的是______.

①都大于1②都小于1③至少有一个不大于1④至多有一个不小于1⑤至少有一个不小于1.答案:由题意ai∈R+,xi∈R+,i=1,2,…n,且a12+a22+…an2=1,x12+x22+…xn2=1,对于a1x1,a2x2,…,anxn的值中,若①成立,则分母都小于分子,由于分母的平方和为1,故可得a12+a22+…an2大于1,这与已知矛盾,故①不对;若②成立,则分母都大于分子,由于分母的平方和为1,故可得a12+a22+…an2小于1,这与已知矛盾,故②不对;由于③与①两结论互否,故③对④不可能成立,a1x1,a2x2,…,anxn的值中有多于一个的比值大于1是可以的,故不对⑤与②两结论互否,故正确综上③⑤两结论正确故为③⑤19.一圆形纸片的圆心为点O,点Q是圆内异于O点的一定点,点A是圆周上一点.把纸片折叠使点A与Q重合,然后展平纸片,折痕与OA交于P点.当点A运动时点P的轨迹是()A.圆B.椭圆C.双曲线D.抛物线答案:如图所示,由题意可知:折痕l为线段AQ的垂直平分线,∴|AP|=|PQ|,而|OP|+|PA|=|OA|=R,∴|PO|+|PQ|=R定值>|OQ|.∴当点A运动时点P的轨迹是以点O,D为焦点,长轴长为R的椭圆.故选B.20.给出下列四个命题:

①若两个向量相等,则它们的起点相同,终点相同;

②在平行四边形ABCD中,一定有;

③若则

④若则

其中正确的命题个数是()

A.1

B.2

C.3

D.4答案:C21.下面哪个不是算法的特征()A.抽象性B.精确性C.有穷性D.唯一性答案:根据算法的概念,可知算法具有抽象性、精确性、有穷性等,同一问题,可以有不同的算法,故选D.22.四支足球队争夺冠、亚军,不同的结果有()

A.8种

B.10种

C.12种

D.16种答案:C23.袋中有5个小球(3白2黑),现从袋中每次取一个球,不放回地抽取两次,则在第一次取到白球的条件下,第二次取到白球的概率是()

A.

B.

C.

D.答案:C24.已知平面向量a,b,c满足a+b+c=0,且a与b的夹角为135°,c与b的夹角为120°,|c|=2,则|a|=______.答案:∵a+b+c=0∴三个向量首尾相接后,构成一个三角形且a与b的夹角为135°,c与b的夹角为120°,|c|=2,故所得三角形如下图示:其中∠C=45°,∠A=60°,AB=2∴|a|=AB?Sin∠Asin∠C=6故为:625.已知点A(-3,0),B(3,0),动点C到A、B两点的距离之差的绝对值为2,点C的轨迹与直线

y=x-2交于D、E两点,求线段DE的中点坐标及其弦长DE.答案:∵|CB|-|CA|=2<23=|AB|,∴点C的轨迹是以A、B为焦点的双曲线,2a=2,2c=23,∴a=1,c=3,∴b=2,∴点C的轨迹方程为x2-y22=1.把直线

y=x-2代入x2-y22=1化简可得x2+4x-6=0,△=16-4(-6)=40>0,设D、E两点的坐标分别为(x1,y1

)、(x2,y2),∴x1+x2=-4,x1•x2=-6.∴线段DE的中点坐标为M(-2,4),DE=1+1•|x1-x2|=2•(x1

+x2)2-4x1

•x2

=216-4(-6)=45.26.已知如下等式:12=1×2×36,12+22=2×3×56,12+22+32=3×4×76,…当n∈N*时,试猜想12+22+32+…+n2的值,并用数学归纳法给予证明.答案:由已知,猜想12+22+32+…+n2=n(n+1)(2n+1)6,下面用数学归纳法给予证明:(1)当n=1时,由已知得原式成立;(2)假设当n=k时,原式成立,即12+22+32+…+k2=k(k+1)(2k+1)6,那么,当n=k+1时,12+22+32+…+(k+1)2=k(k+1)(2k+1)6+(k+1)2=(k+1)(k+2)(2k+3)6=(k+1)[(k+1)+1][2(k+1)+1]6故n=k+1时,原式也成立.由(1)、(2)知12+22+32+…+n2=n(n+1)(2n+1)6成立.27.命题“12既是4的倍数,又是3的倍数”的形式是()A.p∨qB.p∧qC.¬pD.简单命题答案:命题“12既是4的倍数,又是3的倍数”可转化成“12是4的倍数且12是3的倍数”故是p且q的形式;故选B.28.某工厂生产的产品,用速度恒定的传送带将产品送入包装车间之前,质检员每隔3分钟从传送带上是特定位置取一件产品进行检测,这种抽样方法是()

A.简单随机抽样

B.系统抽样

C.分层抽样

D.其它抽样方法答案:B29.设双曲线的渐近线为:y=±32x,则双曲线的离心率为______.答案:由题意ba=32或ab=32,∴e=ca=132或133,故为132,133.30.已知复数z=2+i,则z2对应的点在第()象限.A.ⅠB.ⅡC.ⅢD.Ⅳ答案:由z=2+i,则z2=(2+i)2=22+4i+i2=3+4i.所以,复数z2的实部等于3,虚部等于4.所以z2对应的点在第Ⅰ象限.故选A.31.(理)

设O为坐标原点,向量OA=(1,2,3),OB=(2,1,2),OP=(1,1,2),点Q在直线OP上运动,则当QA•QB取得最小值时,点Q的坐标为______.答案:∵OP=(1,1,2),点Q在直线OP上运动,设OQ=λOP=(λ,λ,2λ)又∵向量OA=(1,2,3),OB=(2,1,2),∴QA=(1-λ,2-λ,3-2λ),QB=(2-λ,1-λ,2-2λ)则QA•QB=(1-λ)×(2-λ)+(2-λ)×(1-λ)+(3-2λ)×(2-2λ)=6λ2-16λ+10易得当λ=43时,QA•QB取得最小值.此时Q的坐标为(43,43,83)故为:(43,43,83)32.引入复数后,数系的结构图为()

A.

B.

C.

D.

答案:A33.将一个总体分为A、B、C三层,其个体数之比为5:3:2,若用分层抽样的方法抽取容量为180的样本,则应从C中抽取样本的个数为______个.答案:由分层抽样的定义可得应从B中抽取的个体数为180×25+3+2=36,故为:36.34.设△ABC是边长为1的正三角形,则|CA+CB|=______.答案:∵△ABC是边长为1的正三角形,∴|CA|=1,|CB|=1,CA?CB=1×1×cosπ3=12∴|CA+CB|=CA2+2CA?CB+CB2=1+1+

2×12=3,故为:335.已知点P1的球坐标是P1(4,,),P2的柱坐标是P2(2,,1),则|P1P2|=()

A.

B.

C.

D.4答案:A36.给定椭圆C:x2a2+y2b2=1(a>b>0),称圆心在原点O、半径是a2+b2的圆为椭圆C的“准圆”.已知椭圆C的一个焦点为F(2,0),其短轴的一个端点到点F的距离为3.

(1)求椭圆C和其“准圆”的方程;

(2)过椭圆C的“准圆”与y轴正半轴的交点P作直线l1,l2,使得l1,l2与椭圆C都只有一个交点,求l1,l2的方程;

(3)若点A是椭圆C的“准圆”与x轴正半轴的交点,B,D是椭圆C上的两相异点,且BD⊥x轴,求AB•AD的取值范围.答案:(1)由题意可得:a=3,c=2,b=1,∴r=(3)2+12=2.∴椭圆C的方程为x23+y2=1,其“准圆”的方程为x2+y2=4;(2)由“准圆”的方程为x2+y2=4,令y=0,解得x=±2,取P(2,0),设过点P且与椭圆相切的直线l的方程为my=x-2,联立my=x-2x23+y2=1,消去x得到关于y的一元二次方程(3+m2)x2+4m+1=0,∴△=16m2-4(3+m2)=0,解得m=±1,故直线l1、l2的方程分别为:y=x-2,y=-x+2.(3)由“准圆”的方程为x2+y2=4,令y=0,解得x=±2,取点A(2,0).设点B(x0,y0),则D(x0,-y0).∴AB•AD=(x0-2,y0)•(x0-2,-y0)=(x0-2)2-y02,∵点B在椭圆x23+y2=1上,∴x023+y02=1,∴y02=1-x023,∴AD•AB=(x0-2)2-1+x023=43(x0-32)2,∵-3<x0<3,∴0≤43(x0-32)2<7+43,∴0≤AD•AB<7+43,即AD•AB的取值范围为[0,7+43)37.已知不等式(a2+a+2)2x>(a2+a+2)x+8,其中x∈N+,使此不等式成立的x的最小整数值是______.答案:∵a2+a+2=(a+12)2+74>1,且x∈N+,∴由正整数指数函数在底数大于1时单调递增的性质,得2x>x+8,即x>8,∴使此不等式成立的x的最小整数值为9.故为:9.38.春天到了,曲曲折折的荷塘上面,弥望的是田田的叶子,已知每一天荷叶覆盖水面的面积是前一天的2倍,若荷叶20天可以完全长满池塘水面,当荷叶刚好覆盖水面面积的一半时,荷叶已生长了()A.10天B.15天C.19天D.20天答案:设荷叶覆盖水面的初始面积为a,则x天后荷叶覆盖水面的面积y=a?2x(x∈N+),根据题意,令2(a?2x)=a?220,解得x=19,故选C.39.某程序框图如图所示,若a=3,则该程序运行后,输出的x值为______.答案:由题意,x的初值为1,每次进行循环体则执行乘二加一的运算,执行4次后所得的结果是:1×2+1=3,3×2+1=7,7×2+1=15,15×2+1=31,故为:31.40.若x~B(3,13),则P(x=1)=______.答案:∵x~B(3,13),∴P(x=1)=C13(13)(1-13)2=49.故为:49.41.为提高广东中小学生的健康素质和体能水平,广东省教育厅要求广东各级各类中小学每年都要在体育教学中实施“体能素质测试”,测试总成绩满分为100分.根据广东省标准,体能素质测试成绩在[85,100]之间为优秀;在[75,85]之间为良好;在[65,75]之间为合格;在(0,60)之间,体能素质为不合格.

现从佛山市某校高一年级的900名学生中随机抽取30名学生的测试成绩如下:

65,84,76,70,56,81,87,83,91,75,81,88,80,82,93,85,90,77,86,81,83,82,82,64,79,86,68,71,89,96.

(1)在答题卷上完成频率分布表和频率分布直方图,并估计该校高一年级体能素质为优秀的学生人数;

(2)在上述抽取的30名学生中任取2名,设ξ为体能素质为优秀的学生人数,求ξ的分布列和数学期望(结果用分数表示);

(3)请你依据所给数据和上述广东省标准,对该校高一学生的体能素质给出一个简短评价.答案:(1)由已知的数据可得频率分布表和频率分布直方图如下:

分组

频数

频率[55,60)

1

130[60,65)

1

130[65,70)

2

230[70,75)

2

230[75,80)

4

430[80,85)

10

1030[85,90)

6

630[90,95)

3

330[95,100)

1

130根据抽样,估计该校高一学生中体能素质为优秀的有1030×900=300人

…(5分)(2)ξ的可能取值为0,1,2.…(6分)P(ξ=0)=C220C230=3887,P(ξ=1)=C120C110C230=4087,P(ξ=2)=C210C230=987

…(8分)∴ξ分布列为:ξ012P38874087987…(9分)所以,数学期望Eξ=0×3887+1×4087+2×987=5887=23.…(10分)(3)根据抽样,估计该校高一学生中体能素质为优秀有1030×900=300人,占总人数的13,体能素质为良好的有1430×900=420人,占总人数的715,体能素质为优秀或良好的共有2430×900=720人,占总人数的45,但体能素质为不合格或仅为合格的共有630×900=180人,占总人数的15,说明该校高一学生体能素质良好,但仍有待进一步提高,还需积极参加体育锻炼.42.x=5

y=6

PRINT

x+y=11

END

上面程序运行时输出的结果是()

A.x+y=11

B.11

C.x+y

D.出错信息答案:B43.若k∈R,则“k>3”是“方程表示双曲线”的()

A.充分不必要条件

B.必要不充分条件

C.充要条件

D.既不充分也不必要条件答案:A44.经过两点A(-3,5),B(1,1

)的直线倾斜角为______.答案:因为两点A(-3,5),B(1,1

)的直线的斜率为k=1-51-(-3)=-1所以直线的倾斜角为:135°.故为:135°.45.一个算法的流程图如图所示,则输出S的值为

.答案:根据程序框图,题意为求:s=1+2+3+4+5+6+7+8+9,计算得:s=45,故为:45.46.方程2x2+ky2=1表示的曲线是长轴在y轴的椭圆,则实数k的范围是()A.(0,+∞)B.(2,+∞)C.(0,2)D.(2,0)答案:椭圆方程化为x212+y21k=1.焦点在y轴上,则1k>12,即k<2.又k>0,∴0<k<2.故选C.47.函数f(x)的定义域为R+,若f(x+y)=f(x)+f(y),f(8)=3,则f(2)=()A.54B.34C.12D.14答案:∵f(x+y)=f(x)+f(y),f(8)=3,∴令x=y=4,则f(8)=2f(4)=3,∴f(4)=32,令x=y=2,f(4)=2f(2)=32,∴f(2)=34.故选B.48.过抛物线y2=4x的焦点作一条直线与抛物线相交于A、B两点,它们的横坐标之和等于5,则这样的直线()

A.有且仅有一条

B.有且仅有两条

C.有无穷多条

D.不存在答案:B49.若将方程|(x-4)2+y2-(x+4)2+y2|=6化简为x2a2-y2b2=1的形式,则a2-b2=______.答案:方程|(x-4)2+y2-(x+4)2+y2|=6,表示点(x,y)到(4,0),(-4,0)两点距离差的绝对值为6,∴轨迹为以(4,0),(-4,0)为焦点的双曲线,方程为x29-y27=1∴a2-b2=2故为:250.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是()

A.若k2的观测值为k=6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病

B.从独立性检验可知,有99%的把握认为吸烟与患肺病有关时,我们说某人吸烟,那么他有99%的可能患有肺病

C.若从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误

D.以上三种说法都不正确答案:D第3卷一.综合题(共50题)1.若直线的参数方程为(t为参数),则该直线的斜率为()

A.

B.2

C.1

D.-1答案:D2.2005年10月,我国载人航天飞船“神六”飞行获得圆满成功.已知“神六”飞船变轨前的运行轨道是一个以地心为焦点的椭圆,飞船近地点、远地点离地面的距离分别为200公里、250公里.设地球半径为R公里,则此时飞船轨道的离心率为______.(结果用R的式子表示)答案:(I)设椭圆的方程为x2a2+y2b2=1由题设条件得:a-c=|OA|-|OF2|=|F2A|=R+200,a+c=|OB|+|OF2|=|F2B|=R+250,解得a=225+R,c=25则此时飞船轨道的离心率为25225+R故为:25225+R.3.已知A(1,0,0)、B(0,1,0)、C(0,0,1)三点,n=(1,1,1),则以n为方向向量的直线l与平面ABC的关系是()A.垂直B.不垂直C.平行D.以上都有可能答案:由题意,AB=(-1,1,0),BC=(0,-1,1)∵n•AB=0,n•BC=0∴以n为方向向量的直线l与平面ABC垂直故选A.4.某种肥皂原零售价每块2元,凡购买2块以上(包括2块),商场推出两种优惠销售办法。第一种:一块肥皂按原价,其余按原价的七折销售;第二种:全部按原价的八折销售。你在购买相同数量肥皂的情况下,要使第一种方法比第二种方法得到的优惠多,最少需要买(

)块肥皂。

A.5

B.2

C.3

D.4答案:D5.已知圆O的两弦AB和CD延长相交于E,过E点引EF∥CB交AD的延长线于F,过F点作圆O的切线FG,求证:EF=FG.答案:证明:∵FG为⊙O的切线,而FDA为⊙O的割线,∴FG2=FD?FA①又∵EF∥CB,∴∠1=∠2.而∠2=∠3,∴∠1=∠3,∠EFD=∠AFE为公共角∴△EFD∽△AFE,FDEF=EFFA,即EF2=FD?FA②由①,②可得EF2=FG2∴EF=FG.6.用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为()

A.8

B.24

C.48

D.120答案:C7.欲对某商场作一简要审计,通过检查发票及销售记录的2%来快速估计每月的销售总额.现采用如下方法:从某本50张的发票存根中随机抽一张,如15号,然后按序往后将65号,115号,165号,…发票上的销售额组成一个调查样本.这种抽取样本的方法是()A.简单随机抽样B.系统抽样C.分层抽样D.其它方式的抽样答案:∵总体的个体比较多,抽样时某本50张的发票存根中随机抽一张,如15号,这是系统抽样中的分组,然后按序往后将65号,115号,165号,…发票上的销售额组成一个调查样本.故选B.8.

已知向量

=(4,3),=(1,2),若向量

+k

-

垂直,则k的值为(

)A.

233B.7C.-

115D.-

233答案:考点:数量积判断两个平面向量的垂直关系.9.若对n个向量a1,a2,…,an,存在n个不全为零的实数k1,k2…,kn,使得k1a1+k2a2+…+knan=0成立,则称向量a1,a2,…,an为“线性相关”.依此规定,请你求出一组实数k1,k2,k3的值,它能说明a1=(1,0),a2=(1,-1),a3=(2,2)“线性相关”.k1,k2,k3的值分别是______(写出一组即可).答案:设a1=(1,0),a2=(1,-1),a3=(2,2)“线性相关”.则存在实数,k1,k2,k3,使k1a1+k2a2+k3a3=0∵a1=(1,0),a2=(1,-1),a3=(2,2)∴k1+k2+2k3=0,且-k2+2k3=0令k3=1,则k2=2,k1=-4故为:-4,2,110.如图所示的几何体ABCDE中,DA⊥平面EAB,CB∥DA,EA=DA=AB=2CB,EA⊥AB,M是EC的中点,

(Ⅰ)求证:DM⊥EB;

(Ⅱ)设二面角M-BD-A的平面角为β,求cosβ.答案:分别以直线AE,AB,AD为x轴、y轴、z轴,建立如图所示的空间直角坐标系A-xyz,设CB=a,则A(0,0,0),E(2a,0,0),B(0,2a,0),C(0,2a,a),D(0,0,2a)所以M(a,a,a2).(Ⅰ):DM=(a,a,-3a2)

,EB=(-2a,2a,0)DM•EB=a•(-2a)+a•2a+0=0.∴DM⊥EB,即DM⊥EB.(Ⅱ)设平面MBD的法向量为n=(x,y,z),DB=(0,2a,-2a),由n⊥DB,n⊥DM,得n•DB=2ay-2az=0n•DM=ax+ay-3a2z=0⇒y=zx+y-3z2=0取z=2得平面MBD的一非零法向量为n=(1,2,2),又平面BDA的一个法向量n1=(1,0,0).∴cos<n,n1>

=1+0+012+22+22•12+02+

02=13,即cosβ=1311.有一农场种植一种水稻在同一块稻田中连续8年的年平均产量如下:(单位:kg)

450

430

460

440

450

440

470

460;

则其方差为()

A.120

B.80

C.15

D.150答案:D12.圆x2+y2-4x=0在点P(1,)处的切线方程为()

A.x+y-2=0

B.x+y-4=0

C.x-y+4=0

D.x-y+2=0答案:D13.当x∈N+时,用“>”“<”或“=”填空:

(12)x______1,2x______1,(12)x______2x,(12)x______(13)x,2x______3x.答案:根据指数函数的性质得,当x∈N+时,(12)x<1,2x>1,则2x>(12)x,且2x<3x,则(12)x>(13)x,故为:<、>、<、>、<.14.如图在长方形ABCD中,AB=,BC=1,E为线段DC上一动点,现将△AED沿AE折起,使点D在面ABC上的射影K在直线AE上,当E从D运动到C,则K所形成轨迹的长度为()

A.

B.

C.

D.答案:B15.教材中“坐标平面上的直线”与“圆锥曲线”两章内容体现出解析几何的本质是______.答案:这两章的内容都是通过建立直角坐标系,用代数中的函数思想来解决图形中的几何性质.故为用代数的方法研究图形的几何性质解析:教材中“坐标平面上的直线”与“圆锥曲线”两章内容体现出解析几何的本质是______.16.下列命题:

①用相关系数r来刻画回归的效果时,r的值越大,说明模型拟合的效果越好;

②对分类变量X与Y的随机变量的K2观测值来说,K2越小,“X与Y有关系”可信程度越大;

③两个随机变量相关性越强,则相关系数的绝对值越接近1;

其中正确命题的序号是

______.(写出所有正确命题的序号)答案:①是由于r可能是负值,要改为|r|的值越大,说明模型拟合的效果越好,故①错误,②对分类变量X与Y的随机变量的K2观测值来说,K2越大,“X与Y有关系”可信程度越大;故②正确③两个随机变量相关性越强,则相关系数的绝对值越接近1;故③正确,故为:③17.一圆形纸片的圆心为O,点Q是圆内异于O点的一个定点,点A是圆周上一动点,把纸片折叠使得点A与点Q重合,然后抹平纸片,折痕CD与OA交于点P,当点A运动时,点P的轨迹为()

A.椭圆

B.双曲线

C.抛物线

D.圆答案:A18.设函数f(x)的定义域为R,如果对任意的实数x,y都有f(x+y)=f(x)+f(y)成立,且f(2)=1,那么f(3)=______.答案:对任意的实数x,y都有f(x+y)=f(x)+f(y)成立,且f(2)=1,∴f(2)=2f(1)=1∴f(1)=12那么f(3)=f(2)+f(1)=1=12=32故为:3219.已知a=(1,0),b=(m,m)(m>0),则<a,b>=______.答案:∵b=(m,m)(m>0),∴b与第一象限的角平分线同向,且由原点指向远处,而a=(1,0)同横轴的正方向同向,∴<a,b>=45°,故为:45°20.给出下列四个命题,其中正确的一个是()

A.在线性回归模型中,相关指数R2=0.80,说明预报变量对解释变量的贡献率是80%

B.在独立性检验时,两个变量的2×2列联表中对角线上数据的乘积相差越大,说明这两个变量没有关系成立的可能性就越大

C.相关指数R2用来刻画回归效果,R2越小,则残差平方和越大,模型的拟合效果越好

D.线性相关系数r的绝对值越接近于1,表明两个随机变量线性相关性越强答案:D21.若平面α与β的法向量分别是a=(1,0,-2),b=(-1,0,2),则平面α与β的位置关系是()A.平行B.垂直C.相交不垂直D.无法判断答案:∵a=(1,0,-2),b=(-1,0,2),∴a+b=(1-1,0+0,-2+2)=(0,0,0),即a+b=0由此可得a∥b∵a、b分别是平面α与β的法向量∴平面α与β的法向量平行,可得平面α与β互相平行.22.已知△ABC∽△DEF,且相似比为3:4,S△ABC=2cm2,则S△DEF=______cm2.答案:∵△ABC∽△DEF,且相似比为3:4∴S△ABC:S△DEF=9:16∴S△DEF=329.故为:329.23.有这样一段“三段论”推理,对于可导函数f(x),大前提:如果f’(x0)=0,那么x=x0是函数f(x)的极值点;小前提:因为函数f(x)=x3在x=0处的导数值f’(0)=0,结论:所以x=0是函数f(x)=x3的极值点.以上推理中错误的原因是______错误(填大前提、小前提、结论).答案:∵大前提是:“对于可导函数f(x),如果f'(x0)=0,那么x=x0是函数f(x)的极值点”,不是真命题,因为对于可导函数f(x),如果f'(x0)=0,且满足当x>x0时和当x<x0时的导函数值异号时,那么x=x0是函数f(x)的极值点,∴大前提错误,故为:大前提.24.如果圆x2+y2+Gx+Ey+F=0与x轴相切于原点,那么()A.F=0,G≠0,E≠0B.E=0,F=0,G≠0C.G=0,F=0,E≠0D.G=0,E=0,F≠0答案:圆与x轴相切于原点,则圆心在y轴上,G=0,圆心的纵坐标的绝对值等于半径,F=0,E≠0.故选C.25.(几何证明选讲选选做题)如图,AC是⊙O的直径,B是⊙O上一点,∠ABC的平分线与⊙O相交于.D已知BC=1,AB=3,则AD=______;过B、D分别作⊙O的切线,则这两条切线的夹角θ=______.答案:∵AC是⊙O的直径,B是⊙O上一点∴∠ABC=90°∵∠ABC的平分线与⊙O相交于D,BC=1,AB=3∴∠C=60°,∠BAC=30°,∠ABD=∠CBD=45°由圆周角定理可知∠C=∠ADB=60°△ABD中,由正弦定理可得ABsin60°=ADsin45°即AD=3sin60°×sin45°=2∵∠BAD=30°+45°=75°∴∠BOD=2∠BAD=150°设所作的两切线交于点P,连接OB,OD,则可得OB⊥PB,OD⊥PD即∠OBP=∠ODP=90°∴点ODPB共圆∴∠P+∠BOD=180°∴∠P=30°故为:2,30°26.从一批羽毛球产品中任取一个,质量小于4.8

g的概率是0.3,质量不小于4.85

g的概率是0.32,那么质量在[4.8,4.85)g范围内的概率是()

A.0.62

B.0.38

C.0.7

D.0.68答案:B27.给出20个数:87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88它们的和是()A.1789B.1799C.1879D.1899答案:由题意知本题是一个求和问题,87+91+94+88+93+91+89+87+92+86+90+92+88+90+91+86+89+92+95+88=1799,故选B.28.用A、B、C三类不同的元件连接成两个系统N1、N2当元件A、B、C都正常工作时,系统N1正常工作,当元件A正常工作且元件B、C至少有一个正常工作时,系统N2正常工作。已知元件A、B、C正常工作的概率依次为0.80,0.90,0.90,分别求系统N1、N2正常工作的概率.

答案:0.792解析:解:分别记三个元件A、B、C能正常工作为事件A、B、C,由题意,这三个事件相互独立,系统N1正常工作的概率为P(A·B·C)=P(A)·P(B)·P(C)=0.8´0.9´0.9=0.648系统N2中,记事件D为B、C至少有一个正常工作,则P(D)=1–P()="1–"P()·P()=1–(1–0.9)´(1–0.9)=0.99系统N2正常工作的概率为P(A·D)=P(A)·P(D)=0.8´0.99=0.792。29.国旗上的正五角星的每一个顶角是多少度?答案:由图可知:∠AFG=∠C+∠E=2∠C,∠AGF=∠B+∠D=2∠B,∴∠A+∠AFG+∠AGF=∠A+2∠C+2∠B=5∠A∴5∠A=180°,∴∠A=36°.30.已知:如图,四边形ABCD内接于⊙O,,过A点的切线交CB的延长线于E点,求证:AB2=BE·CD。

答案:证明:连结AC,因为EA切⊙O于A,所以∠EAB=∠ACB,因为,所以∠ACD=∠ACB,AB=AD,于是∠EAB=∠ACD,又四边形ABCD内接于⊙O,所以∠ABE=∠D,所以△ABE∽△CDA,于是,即AB·DA=BE·CD,所以。31.一圆形纸片的圆心为点O,点Q是圆内异于O点的一定点,点A是圆周上一点.把纸片折叠使点A与Q重合,然后展平纸片,折痕与OA交于P点.当点A运动时点P的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论