版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年甘肃畜牧工程职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.复数z=sin1+icos2在复平面内对应的点位于第______象限.答案:z对应的点为(sin1,cos2)∵1是第一象限的角,2是第二象限的角∵sin1>0,cos2<0所以(sin1,cos2)在第四象限故为:四2.已知双曲线x2-y22=1,经过点M(1,1)能否作一条直线l,使直线l与双曲线交于A、B,且M是线段AB的中点,若存在这样的直线l,求出它的方程;若不存在,说明理由.答案:设过点M(1,1)的直线方程为y=k(x-1)+1或x=1(1)当k存在时有y=k(x-1)+1x2
-y22=1得(2-k2)x2+(2k2-2k)x-k2+2k-3=0
(1)当直线与双曲线相交于两个不同点,则必有△=(2k2-2k)2-4(2-k2)(-k2+2k-3)>0,k<32
又方程(1)的两个不同的根是两交点A、B的横坐标∴x1+x2=2(k-k2)2-k2
又M(1,1)为线段AB的中点∴x1+x22=1
即k-k22-k2=1
k=2
∴k=2,使2-k2≠0但使△<0因此当k=2时,方程(1)无实数解故过点m(1,1)与双曲线交于两点A、B且M为线段AB中点的直线不存在.(2)当x=1时,直线经过点M但不满足条件,综上,符合条件的直线l不存在3.若向量=(1,λ,2),=(-2,1,1),,夹角的余弦值为,则λ等于()
A.1
B.-1
C.±1
D.2答案:A4.已知向量,,若与共线,则的值为
A
B
C
D
答案:D解析:,,由,得5.如图所示,在几何体ABCDE中,△ABC是等腰直角三角形,∠ABC=90°,BE和CD都垂直于平面ABC,且BE=AB=2,CD=1,点F是AE的中点.求AB与平面BDF所成角的正弦值.答案:AB与平面BDF所成角的正弦值为.解析:以点B为原点,BA、BC、BE所在的直线分别为x,y,z轴,建立如图所示的空间直角坐标系,则B(0,0,0),A(2,0,0),C(0,2,0),D(0,2,1),E(0,0,2),F(1,0,1).∴=(0,2,1),=(1,-2,0).设平面BDF的一个法向量为n=(2,a,b),∵n⊥,n⊥,∴即解得a=1,b=-2.∴n=(2,1,-2).设AB与平面BDF所成的角为,则法向量n与的夹角为-,∴cos(-)===,即sin=,故AB与平面BDF所成角的正弦值为.6.在极坐标系中,极点到直线ρcosθ=2的距离为______.答案:直线ρcosθ=2即x=2,极点的直角坐标为(0,0),故极点到直线ρcosθ=2的距离为2,故为2.7.用长为4、宽为2的矩形做侧面围成一个高为2的圆柱,此圆柱的轴截面面积为()A.8B.8πC.4πD.2π答案:∵用长为4、宽为2的矩形做侧面围成一个圆柱,且圆柱高为h=2∴底面圆周由长为4的线段围成,可得底面圆直径2r=4π∴此圆柱的轴截面矩形的面积为S=2r×h=8π故选:B8.设点P对应的复数为-3+3i,以原点为极点,实轴正半轴为极轴建立极坐标系,则点P的极坐标为()
A.(3,π)
B.(-3,π)
C.(3,π)
D.(-3,π)答案:A9.用数学归纳法证明等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N+)时,第一步验证n=1时,左边应取的项是______答案:在等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N+)中,当n=1时,n+3=4,而等式左边起始为1的连续的正整数的和,故n=1时,等式左边的项为:1+2+3+4故为:1+2+3+410.已知△ABC的顶点坐标分别为A(2,3),B(-1,0),C(2,0),则△ABC的周长是()
A.2
B.6+
C.3+2
D.6+3答案:D11.已知△ABC的三个顶点为A(1,-2,5),B(-1,0,1),C(3,-4,5),则边BC上的中线长为______.答案:∵A(1,-2,5),B(-1,0,1),C(3,-4,5),∴BC的中点为D(1,-2,3),∴|AD|=(1-1)2+(-2+2)2+(5-3)2=2.故为:2.12.直线y=2x与直线x+y=3的交点坐标是
______.答案:联立两直线方程得y=2xx+y=3,解得x=1y=2所以直线y=2x与直线x+y=3的交点坐标是(1,2)故为(1,2).13.命题“存在实数x,,使x>1”的否定是()
A.对任意实数x,都有x>1
B.不存在实数x,使x≤1
C.对任意实数x,都有x≤1
D.存在实数x,使x≤1答案:C14.如图,AC、BC分别是直角三角形ABC的两条直角边,且AC=3,BC=4,以AC为直径作圆与斜边AB交于D,则BD=______.答案:连CD,在Rt△ABC中,因为AC、BC的长分别为3cm、4cm,所以AB=5cm,∵AC为直径,∴∠ADC=90°,∵∠B公共角,可得Rt△BDC∽Rt△BCA,∴BD=165,故为:16515.已知直线ax+by+c=0(abc≠0)与圆x2+y2=1相切,则三条边长分别为|a|、|b|、|c|的三角形()
A.是锐角三角形
B.是直角三角形
C.是钝角三角形
D.不存在答案:B16.已知点P1的球坐标是P1(4,,),P2的柱坐标是P2(2,,1),则|P1P2|=()
A.
B.
C.
D.4答案:A17.执行如图所示的程序框图,输出的S值为()
A.2
B.4
C.8
D.16
答案:C18.如图把椭圆x225+y216=1的长轴AB分成8分,过每个分点作x轴的垂线交椭圆的上半部分于P1,P2,…P7七个点,F是椭圆的一个焦点,则|P1F|+|P2F|+…+|P7F|=______.答案:如图,把椭圆x225+y216=1的长轴AB分成8等份,过每个分点作x轴的垂线交椭圆的上半部分于P1,P2,P3,P4,P5,P6,P7七个点,F是椭圆的一个焦点,则根据椭圆的对称性知,|P1F1|+|P7F1|=|P1F1|+|P1F2|=2a,同理其余两对的和也是2a,又|P4F1|=a,∴|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=7a=35,故为35.19.例3.设a>0,b>0,解关于x的不等式:|ax-2|≥bx.答案:原不等式|ax-2|≥bx可化为ax-2≥bx或ax-2≤-bx,(1)对于不等式ax-2≤-bx,即(a+b)x≤2
因为a>0,b>0即:x≤2a+b.(2)对于不等式ax-2≥bx,即(a-b)x≥2①当a>b>0时,由①得x≥2a-b,∴此时,原不等式解为:x≥2a-b或x≤2a+b;当a=b>0时,由①得x∈ϕ,∴此时,原不等式解为:x≤2a+b;当0<a<b时,由①得x≤2a-b,∴此时,原不等式解为:x≤2a+b.综上可得,当a>b>0时,原不等式解集为(-∞,2a+b]∪[2a-b,+∞),当0<a≤b时,原不等式解集为(-∞,2a+b].20.已知随机变量ξ服从二项分布ξ~B(6,),则E(2ξ+4)=()
A.10
B.4
C.3
D.9答案:A21.已知命题p:所有有理数都是实数,命题q:正数的对数都是负数,则下列命题中为真命题的是()A.(¬p)∨qB.p∧qC.(¬p)∧(¬q)D.(¬p)∨(¬q)答案:不难判断命题p为真命题,命题q为假命题,从而?p为假命题,?q为真命题,所以A、B、C均为假命题,故选D.22.求证:若圆内接四边形的两条对角线互相垂直,则从对角线交点到一边中点的线段长等于圆心到该边对边的距离.答案:以两条对角线的交点为原点O、对角线所在直线为坐标轴建立直角坐标系,(如图所示)
设A(-a,0),B(0,-b),C(c,0),D(0,d),则CD的中点E(c2,d2),AB的中点H(-a2,-b2).又圆心G到四个顶点的距离相等,故圆心G的横坐标等于AC中点的横坐标,等于c-a2,圆心G的纵坐标等于BD中点的纵坐标,等于d-b2.即圆心G(c-a2,d-b2),∴|OE|2=c2+d24,|GH|2=(c-a2+a2)2+(d-b2+b2)2=c2+d24,∴|OE|=|GH|,故要证的结论成立.23.如图,圆心角∠AOB=120°,P是AB上任一点(不与A,B重合),点C在AP的延长线上,则∠BPC等于______.
答案:解:设点E是优弧AB(不与A、B重合)上的一点,∵∠AOB=120°,∴∠AEB=60°,∵∠BPA=180°-∠AEB=180°-∠BPC,∴∠BPC=∠AEB.∴∠BPC=60°.故为60°.24.若a为实数,,则a等于()
A.
B.-
C.2
D.-2答案:B25.给出一个程序框图,输出的结果为s=132,则判断框中应填()
A.i≥11
B.i≥10
C.i≤11
D.i≤12
答案:A26.若矩阵A=是表示我校2011届学生高二上学期的期中成绩矩阵,A中元素aij(i=1,2,3,4;j=1,2,3,4,5,6)的含义如下:i=1表示语文成绩,i=2表示数学成绩,i=3表示英语成绩,i=4表示语数外三门总分成绩j=k,k∈N*表示第50k名分数.若经过一定量的努力,各科能前进的名次是一样的.现小明的各科排名均在250左右,他想尽量提高三门总分分数,那么他应把努力方向主要放在哪一门学科上()
A.语文
B.数学
C.外语
D.都一样答案:B27.如图,平面内有三个向量OA,OB,OC,其中OA与OB的夹角为120°,OA与OC的夹角为30°.且|OA|=1,|OB|=1,|OC|=23,若|OC|=λOA+μOB(λ,μ∈R),求λ+μ的值.答案:如图,OC=OD+OE=λOA+μOB,在△OCD中,∠OD=30°,∠OCD=∠COB=90°,可求|OD|=4,同理可求|OE|=2,∴λ=4,μ=2,∴λ+μ=6.28.向量在基底{,,}下的坐标为(1,2,3),则向量在基底{}下的坐标为()
A.(3,4,5)
B.(0,1,2)
C.(1,0,2)
D.(0,2,1)答案:D29.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a,b,c,d对应密文a+2b,2b+c,2c+3d,4d,例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为()A.4,6,1,7B.7,6,1,4C.6,4,1,7D.1,6,4,7答案:∵明文a,b,c,d对应密文a+2b,2b+c,2c+3d,4d,∴当接收方收到密文14,9,23,28时,则a+2b=142b+c=92c+3d=234d=28,解得a=6b=4c=1d=7,解密得到的明文为6,4,1,7故选C.30.有四条线段,其长度分别为2,3,4,5,现从中任取三条,则以这三条线段为边可以构成三角形的概率是______.答案:所有的取法共有C34=4种,三条线段构成三角形的条件是任意两边之和大于第三边,其中能够成三角形的取法有①2、3、4;②2、4、5;③3、4、5,共有3种,故这三条线段为边可以构成三角形的概率是34,故为34.31.如图所示,已知A、B、C三点不共线,O为平面ABC外的一点,若点M满足
(1)判断三个向量是否共面;
(2)判断点M是否在平面ABC内.答案:解:(1)由已知,得,∴向量共面.(2)由(1)知向量共面,三个向量的基线又有公共点M,∴M、A、B、C共面,即点M在平面ABC内,32.如图,在平行四边形OABC中,点C(1,3).
(1)求OC所在直线的斜率;
(2)过点C做CD⊥AB于点D,求CD所在直线的方程.答案:(1)∵点O(0,0),点C(1,3),∴OC所在直线的斜率为kOC=3-01-0=3.(2)在平行四边形OABC中,AB∥OC,∵CD⊥AB,∴CD⊥OC.∴CD所在直线的斜率为kCD=-13.∴CD所在直线方程为y-3=-13(x-1),即x+3y-10=0.33.有一批机器,编号为1,2,3,…,112,为调查机器的质量问题,打算抽取10台,问此样本若采用简单的随机抽样方法将如何获得?答案:本题可以采用抽签法来抽取样本,首先把该校学生都编上号001,002,112…用抽签法做112个形状、大小相同的号签,然后将这些号签放到同一个箱子里,进行均匀搅拌,抽签时,每次从中抽一个号签,连续抽取10次,就得到一个容量为10的样本.34.参数方程x=sinθ+cosθy=sinθ•cosθ化为普通方程是______.答案:把x=sinθ+cosθy=sinθ•cosθ利用同角三角函数的基本关系消去参数θ,化为普通方程可得x2=1+2y,故为x2=1+2y.35.如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P.若PB=1,PD=3,则BCAD的值为______.答案:因为A,B,C,D四点共圆,所以∠DAB=∠PCB,∠CDA=∠PBC,因为∠P为公共角,所以△PBC∽△PAD,所以BCAD=PBPD=13.故为:13.36.已知A(1,2),B(-3,b)两点的距离等于42,则b=______.答案:∵A(1,2),B(-3,b)∴|AB|=(-3-1)2+(b-2)2=42,解之得b=6或-2故为:6或-237.已知双曲线的两个焦点为F1(-,0),F2(,0),P是此双曲线上的一点,且PF1⊥PF2,|PF1|•|PF2|=2,则该双曲线的方程是()
A.
B.
C.
D.答案:C38.给出下列四个命题,其中正确的一个是()
A.在线性回归模型中,相关指数R2=0.80,说明预报变量对解释变量的贡献率是80%
B.在独立性检验时,两个变量的2×2列联表中对角线上数据的乘积相差越大,说明这两个变量没有关系成立的可能性就越大
C.相关指数R2用来刻画回归效果,R2越小,则残差平方和越大,模型的拟合效果越差
D.随机误差e是衡量预报精确度的一个量,它满足E(e)=0答案:D39.有一矩形纸片ABCD,按图所示方法进行任意折叠,使每次折叠后点B都落在边AD上,将B的落点记为B′,其中EF为折痕,点F也可落在边CD上,过B′作B′H∥CD交EF于点H,则点H的轨迹为()A.圆的一部分B.椭圆的一部分C.双曲线的一部分D.抛物线的一部分答案:由题意知:点H到定点B的距离以及到定直线AD的距离相等,根据抛物线的定义可知:点H的轨迹为:抛物线,(抛物线的一部分)故选D.40.从⊙O外一点P引圆的两条切线PA,PB及一条割线PCD,A、B为切点.求证:ACBC=ADBD.
答案:证明:∠CAP=∠ADP∠CPA=∠APD?△CAP∽△ADP?ACAD=APDP,①∠CBP=∠BDP∠CPB=∠BPD?△CBP∽△BDP?BCDB=BPDP,②又AP=BP,③由①②③知:ACAD=BCBD,故ACBC=ADBD.得证.41.已知抛物线C的参数方程为x=8t2y=8t(t为参数),设抛物线C的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足,如果直线AF的斜率为-3,那么|PF|=______.答案:把抛物线C的参数方程x=8t2y=8t(t为参数),消去参数化为普通方程为y2=8x.故焦点F(2,0),准线方程为x=-2,再由直线FA的斜率是-3,可得直线FA的倾斜角为120°,设准线和x轴的交点为M,则∠AFM=60°,且MF=p=4,∴∠PAF=180°-120°=60°.∴AM=MF•tan60°=43,故点A(0,43),把y=43代入抛物线求得x=6,∴点P(6,43),故|PF|=(6-2)2+(43-0)2=8,故为8.42.球的表面积与它的内接正方体的表面积之比是()A.π3B.π4C.π2D.π答案:设:正方体边长设为:a则:球的半径为3a2所以球的表面积S1=4?π?R2=4π34a2=3πa2而正方体表面积为:S2=6a2所以比值为:S1S2=π2故选C43.圆ρ=2sinθ的圆心到直线2ρcosθ+ρsinθ+1=0的距离是______.答案:由ρ=2sinθ,化为直角坐标方程为x2+y2-2y=0,其圆心是A(0,1),由2ρcosθ+ρsinθ+1=0得:化为直角坐标方程为2x+y+1=0,由点到直线的距离公式,得+d=|1+1|5=255.故为255.44.如图,⊙O过点B、C,圆心O在等腰Rt△ABC的内部,,,
.则⊙O的半径为(
).
A.6
B.13
C.
D.答案:C解析:分析:延长AO交BC于D,接OB,根据AB=AC,O是等腰Rt△ABC的内心,推出AD⊥BC,BD=DC=3,AO平分∠BAC,求出∠BAD=∠ABD=45°,AD=BD=3,由勾股定理求出OB即可.解答:解:延长AO交BC于D,连接OB,∵⊙O过B、C,∴O在BC的垂直平分线上,∵AB=AC,圆心O在等腰Rt△ABC的内部,∴AD⊥BC,BD=DC=3,AO平分∠BAC,∵∠BAC=90°,∴∠ADB=90°,∠BAD=45°,∴∠BAD=∠ABD=45°,∴AD=BD=3,∴OD=3-1=2,由勾股定理得:OB==故选C.45.(文)椭圆的一个焦点与短轴的两端点构成一个正三角形,则该椭圆的离心率为()
A.
B.
C.
D.不确定答案:C46.向面积为S的△ABC内任投一点P,则△PBC的面积小于S2的概率为______.答案:记事件A={△PBC的面积小于S2},基本事件空间是三角形ABC的面积,(如图)事件A的几何度量为图中阴影部分的面积(DE是三角形的中位线),因为阴影部分的面积是整个三角形面积的34,所以P(A)=阴影部分的面积三角形ABC的面积=34.故为:34.47.在空间直角坐标系O-xyz中,已知=(1,2,3),=(2,1,2),=(1,1,2),点Q在直线OP上运动,则当取得最小值时,点Q的坐标为()
A.(,,)
B.(,,)
C.(,,)
D.(,,)答案:C48.已知平行直线l1:x-y+1=0与l2:x-y+3=0,求l1与l2间的距离.答案:∵已知平行直线l1:x-y+1=0与l2:x-y+3=0,则l1与l2间的距离d=|3-1|2=2.49.已知抛物线C:y2=4x的焦点为F,点A在抛物线C上运动.
(1)当点A,P满足AP=-2FA,求动点P的轨迹方程;
(2)设M(m,0),其中m为常数,m∈R+,点A到M的距离记为d,求d的最小值.答案:(1)设动点P的坐标为(x,y),点A的坐标为(xA,yA),则AP=(x-xA,y-yA),因为F的坐标为(1,0),所以FA=(xA-1,yA),因为AP=-2FA,所以(x-,y-yA)=-2(xA-1,yA).所以x-xA=-2(xA-1),y-yA=-2yA,所以xA=2-x,yA=-y代入y2=4x,得到动点P的轨迹方程为y2=8-4x;(2)由题意,d=(m-xA)2+yA2=(m-xA)2+4xA=(xA+2-m)2-4-4m∴m-2≤0,即0<m≤2,xA=0时,dmin=m;m-2>0,即m>2,xA=m-2时,dmin=-4-4m.50.已知D、E、F分别是△ABC的边BC、CA、AB的中点,且,则下列命题中正确命题的个数为(
)
①;
②
③;
④
A.1
B.2
C.3
D.4
答案:C第2卷一.综合题(共50题)1.命题“12既是4的倍数,又是3的倍数”的形式是()A.p∨qB.p∧qC.¬pD.简单命题答案:命题“12既是4的倍数,又是3的倍数”可转化成“12是4的倍数且12是3的倍数”故是p且q的形式;故选B.2.参数方程x=sin2θy=cosθ+sinθ(θ为参数)的普通方程为______.答案:把参数方程x=sin2θy=cosθ+sinθ(θ为参数)利用同角三角函数的基本关系消去参数化为普通方程为y2=1+x,故为y2=1+x.3.经过抛物线y2=2x的焦点且平行于直线3x-2y+5=0的直线的方程是()
A.6x-4y-3=0
B.3x-2y-3=0
C.2x+3y-2=0
D.2x+3y-1=0答案:A4.已知正方体ABCD-A1B1C1D1中,M、N分别为BB1、C1D1的中点,建立适当的坐标系,求平面AMN的法向量.答案:(-3,2,-4)为平面AMN的一个法向量.解析:以D为原点,DA、DC、DD1所在直线为坐标轴建立空间直角坐标系.(如图所示).设棱长为1,则A(1,0,0),M(1,1,),N(0,,1).∴=(0,1,),=(-1,,1).设平面AMN的法向量n=(x,y,z)∴令y=2,∴x=-3,z=-4.∴n=(-3,2,-4).∴(-3,2,-4)为平面AMN的一个法向量.5.设复数z的实部是
12,且|z|=1,则z=______.答案:设复数z的虚部等于b,b∈z,由复数z的实部是12,且|z|=1,可得14+b2=1,∴b=±32,故z=12±32i.故为:12±32i.6.设函数f(x)=(1-2a)x+b是R上的增函数,则()A.a>12B.a<12C.a≥12D.a≤12答案:∵函数f(x)=(1-2a)x+b是R上的增函数,∴1-2a>0,∴a<12.故选B.7.意大利数学家菲波拉契,在1202年出版的一书里提出了这样的一个问题:一对兔子饲养到第二个月进入成年,第三个月生一对小兔,以后每个月生一对小兔,所生小兔能全部存活并且也是第二个月成年,第三个月生一对小兔,以后每月生一对小兔.问这样下去到年底应有多少对兔子?试画出解决此问题的程序框图,并编写相应的程序.答案:见解析解析:解:根据题意可知,第一个月有对小兔,第二个月有对成年兔子,第三个月有两对兔子,从第三个月开始,每个月的兔子对数是前面两个月兔子对数的和,设第个月有对兔子,第个月有对兔子,第个月有对兔子,则有,一个月后,即第个月时,式中变量的新值应变第个月兔子的对数(的旧值),变量的新值应变为第个月兔子的对数(的旧值),这样,用求出变量的新值就是个月兔子的数,依此类推,可以得到一个数序列,数序列的第项就是年底应有兔子对数,我们可以先确定前两个月的兔子对数均为,以此为基准,构造一个循环程序,让表示“第×个月的从逐次增加,一直变化到,最后一次循环得到的就是所求结果.流程图和程序如下:S=1Q=1I=3WHILE
I<=12F=S+QQ=SS=FI=I+1WENDPRINT
FEND8.直线x=-2+ty=1-t(t为参数)被圆x=2+2cosθy=-1+2sinθ(θ为参数)所截得的弦长为______.答案:∵圆x=2+2cosθy=-1+2sinθ(θ为参数),消去θ可得,(x-2)2+(y+1)2=4,∵直线x=-2+ty=1-t(t为参数),∴x+y=-1,圆心为(2,-1),设圆心到直线的距离为d=|2-1+1|2=2,圆的半径为2∴截得的弦长为222-(2)2=22,故为22.9.对任意的实数k,直线y=kx+1与圆x2+y2=2
的位置关系一定是()
A.相离
B.相切
C.相交但直线不过圆心
D.相交且直线过圆心答案:C10.设直角三角形的三边长分别为a,b,c(a<b<c),则“a:b:c=3:4:5”是“a,b,c成等差数列”的()A.充分非必要条件B.必要非充分条件C.充分必要条件D.既非充分又非必要条件答案:∵直角三角形的三边长分别为a,b,c(a<b<c),a:b:c=3:4:5,∴a=3k,b=4k,c=5k(k>0),∴a,b,c成等差数列.即“a:b:c=3:4:5”?“a,b,c成等差数列”.∵直角三角形的三边长分别为a,b,c(a<b<c),a,b,c成等差数列,∴a2+b2=c22b=a+c,∴a2+a2+
c2+2ac4=c2,∴4a=3b,5a=3c,∴a:b:c=3:4:5,即“a,b,c成等差数列”?“a:b:c=3:4:5”.故选C.11.已知x1,x2,…,xn都是正数,且x1+x2+…+xn=1,求证:
++…+≥n2.答案:证明略解析:证明
++…+=(x1+x2+…+xn)(
++…+)≥=n2.12.直线3x+4y-7=0与直线6x+8y+3=0之间的距离是()
A.
B.2
C.
D.答案:C13.已知A、B、M三点不共线,对于平面ABM外的任意一点O,确定在下列条件下,点P是否与A、B、M一定共面,答案:解:为共面向量,∴P与A、B、M共面,,根据空间向量共面的推论,P位于平面ABM内的充要条件是,∴P与A、B、M不共面.14.在平行四边形ABCD中,等于()
A.
B.
C.
D.答案:C15.
若平面向量,,两两所成的角相等,||=||=1,||=3,则|++|=()
A.2
B.4
C.2或5
D.4或5答案:C16.三棱锥P-ABC中,M为BC的中点,以为基底,则可表示为()
A.
B.
C.
D.答案:D17.设直线y=kx与椭圆x24+y23=1相交于A、B两点,分别过A、B向x轴作垂线,若垂足恰为椭圆的两个焦点,则k等于()A.±32B.±23C.±12D.±2答案:将直线与椭圆方程联立,y=kxx24+y23=1,化简整理得(3+4k2)x2=12(*)因为分别过A、B向x轴作垂线,垂足恰为椭圆的两个焦点,故方程的两个根为±1.代入方程(*),得k=±32故选A.18.定义直线关于圆的圆心距单位λ为圆心到直线的距离与圆的半径之比.若圆C满足:①与x轴相切于点A(3,0);②直线y=x关于圆C的圆心距单位λ=2,试写出一个满足条件的圆C的方程______.答案:由题意可得圆心的横坐标为3,设圆心的纵坐标为r,则半径为|r|>0,则圆心的坐标为(3,r).设圆心到直线y=x的距离为d,d=|3-r|2,则由题意可得λ=d|r|=2,求得r=1,或r=-3,故一个满足条件的圆C的方程是(x-3)2+(y-1)2=1,故为(x-3)2+(y-1)2=119.从甲、乙两人手工制作的圆形产品中,各自随机抽取6件,测得其直径如下(单位:cm):
甲:9.00,9.20,9.00,8.50,9.10,9.20
乙:8.90,9.60,9.50,8.54,8.60,8.90
据以上数据估计两人的技术稳定性,结论是()
A.甲优于乙
B.乙优于甲
C.两人没区别
D.无法判断答案:A20.在△ABC中,=,=,且=2,则等于()
A.+
B.+
C.+
D.+答案:A21.设集合A={l,2},B={2,4),则A∪B=()A.{1}B.{4}C.{l,4}D.{1,2,4}答案:∵集合A={1,2},集合B={2,4},∴集合A∪B={1,2,4}.故选D.22.化简5(2a-2b)+4(2b-2a)=______.答案:5(2a-2b)+4(2b-2a)=10a-10b+8b-8a=2a-2b故为:2a-2b23.若|x-4|+|x+5|>a对于x∈R均成立,则a的取值范围为______.答案:∵|x-4|+|x+5|=|4-x|+|x+5|≥|4-x+x+5|=9,故|x-4|+|x+5|的最小值为9.再由题意可得,当a<9时,不等式对x∈R均成立.故为(-∞,9).24.在平行六面体ABCD-A′B′C′D′中,若AC′=xAB+2yBC-3zC′C,则x+y+z等于______.答案:根据向量的加法法则可得,AC′=AC+CC′=AB+BC+CC′∵AC′=xAB+2yBC-3zC′C∴x=1,2y=1,-3z=1∴x=1,y=12,z=-13∴x+y+z=1+12-13=76故为:7625.已知点D是△ABC的边BC的中点,若记AB=a,AC=b,则用a,b表示AD为______.答案:以AB,AC为临边作平行四边形ACEB,连接其对角线AE、BC交与点D,易知D是△ABC的边BC的中点,且D是AE的中点,如图:由向量的平行四边形法则可得AB+AC=a+b=AE=2AD,解得AD=12(a+b),故为:AD=12(a+b)26.应用反证法推出矛盾的推导过程中要把下列哪些作为条件使用()
①结论相反的判断,即假设
②原命题的条件
③公理、定理、定义等
④原结论
A.①②
B.①②④
C.①②③
D.②③答案:C27.命题“若b≠3,则b2≠9”的逆命题是______.答案:根据“若p则q”的逆命题是“若q则p”,可得命题“若b≠3,则b2≠9”的逆命题是若b2≠9,则b≠3.故为:若b2≠9,则b≠3.28.半径为5,圆心在y轴上,且与直线y=6相切的圆的方程为______.答案:如图所示,因为半径为5,圆心在y轴上,且与直线y=6相切,所以可知有两个圆,上圆圆心为(0,11),下圆圆心为(0,1),所以圆的方程为x2+(y-1)2=25或x2+(y-11)2=25.29.若椭圆x2+4(y-a)2=4与抛物线x2=2y有公共点,则实数a的取值范围是______.答案:椭圆x2+4(y-a)2=4与抛物线x2=2y联立可得2y=4-4(y-a)2,∴2y2-(4a-1)y+2a2-2=0.∵椭圆x2+4(y-a)2=4与抛物线x2=2y有公共点,∴方程2y2-(4a-1)y+2a2-2=0至少有一个非负根.∴△=(4a-1)2-16(a2-1)=-8a+17≥0,∴a≤178.又∵两根皆负时,由韦达定理可得2a2>2,4a-1<0,∴-1<a<1且a<14,即a<-1.∴方程2y2-(4a-1)y+2a2-2=0至少有一个非负根时,-1≤a≤178故为:-1≤a≤17830.斜二测画法的规则是:
(1)在已知图形中建立直角坐标系xoy,画直观图
时,它们分别对应x′和y′轴,两轴交于点o′,使∠x′o′y′=______,它们确定的平面表示水平平面;
(2)
已知图形中平行于x轴或y轴的线段,在直观图中分别画成
______;
(3)已知图形中平行于x轴的线段的长度,在直观图中
______;平行于y轴的线段,在直观图中
______.答案:按照斜二测画法的规则填空故为:(1)45°或135°;(2)平行于x′轴和y′轴;(3)长度不变;长度减半31.当a≠0时,y=ax+b和y=bax的图象只可能是()
A.
B.
C.
D.
答案:A32.若直线l的方向向量为a,平面α的法向量为n,能使l∥α的是()A.a=(1,0,0),n=(-2,0,0)B.a=(1,3,5),n=(1,0,1)C.a=(0,2,1),n=(-1,0,-1)D.a=(1,-1,3),n=(0,3,1)答案:若l∥α,则a•n=0.而A中a•n=-2,B中a•n=1+5=6,C中a•n=-1,只有D选项中a•n=-3+3=0.故选D.33.已知抛物线的顶点在原点,焦点在x轴的正半轴上,F为焦点,A,B,C为抛物线上的三点,且满足FA+FB+FC=0,|FA|+|FB|+|FC|=6,则抛物线的方程为______.答案:设向量FA,FB,FC的坐标分别为(x1,y1)(x2,y2)(x3,y3)由FA+FB+FC=0得x1+x2+x3=0∵XA=x1+p2,同理XB=x2+p2,XC=x3+p2∴|FA|=x1+p2+p2=x1+p,同理有|FB|=x2+p2+p2=x2+p,|FC|=x3+p2+p2=x3+p,又|FA|+|FB|+|FC|=6,∴x1+x2+x3+3p=6,∴p=2,∴抛物线方程为y2=4x.故为:y2=4x.34.设m、n是两条不同的直线,α、β是两个不同的平面,则下列命题中正确的是()
A.若m∥n,m∥α,则n∥α
B.若α⊥β,m∥α,则m⊥β
C.若α⊥β,m⊥β,则m∥α
D.若m⊥n,m⊥α,n⊥β,则α⊥β答案:D35.已知直线l:kx-y+1+2k=0.
(1)证明l经过定点;
(2)若直线l交x轴负半轴于A,交y轴正半轴于B,△AOB的面积为S,求S的最小值并求此时直线l的方程;
(3)若直线不经过第四象限,求k的取值范围.答案:(1)由kx-y+1+2k=0,得y-1=k(x+2),所以,直线l经过定点(-2,1).(2)由题意得A(2k+1-k,0),B(0,2k+1),且2k+1-k<01+2k>0,故k>0,△AOB的面积为S=12×2k+1k×(2k+1)=4k2+4k+12k=2k+2+12k≥4,当且仅当k=12时等号成立,此时面积取最小值4,k=12,直线的方程是:x-2y+4=0.(3)由直线过定点(-2,1),可得当斜率k>0或k=0时,直线不经过第四象限.故k的取值范围为[0,+∞).36.如图,在△ABC中,D是AC的中点,E是BD的中点,AE交BC于F,则的值等于()
A.
B.
C.
D.
答案:A37.一个算法的流程图如图所示,则输出S的值为
.答案:根据程序框图,题意为求:s=1+2+3+4+5+6+7+8+9,计算得:s=45,故为:45.38.已知x,y的取值如下表所示:
x3711y102024从散点图分析,y与x线性相关,且y=74x+a,则a=______.答案:∵线性回归方程为y=74x+a,,又∵线性回归方程过样本中心点,.x=3+7+113=7,.y=10+20+243=18,∴回归方程过点(7,18)∴18=74×7+a,∴a=234.故为:234.39.从椭圆
x2a2+y2b2=1(a>b>0)上一点P向x轴作垂线,垂足恰为左焦点F1,又点A是椭圆与x轴正半轴的交点,点B是椭圆与y轴正半轴的交点,且AB∥OP,|F1A|=10+5,求椭圆的方程.答案:∵AB∥OP∴PF1F1O=BOOA?PF1=bca又∵PF1⊥x轴∴c2a2+y2b2=1?y=b2a∴b=c由a+c=10+5b=ca2=b2+c2解得:a=10b=5c=5∴椭圆方程为x210+y25=1.40.在下面的图示中,结构图是()
A.
B.
C.
D.
答案:B41.已知0≤θ<2π,复数icosθ+isinθ>0,则θ的值是()A.π2B.3π2C.(0,π)内的任意值D.(0,π2)∪(3π2,2π)内的任意值答案:复数icosθ+isinθ>0,可得icosθ+sinθ>0,因为0≤θ<2π,所以θ=π2.故选A.42.已知平行直线l1:x-y+1=0与l2:x-y+3=0,求l1与l2间的距离.答案:∵已知平行直线l1:x-y+1=0与l2:x-y+3=0,则l1与l2间的距离d=|3-1|2=2.43.已知M(x0,y0)是圆x2+y2=r2(r>0)内异于圆心的一点,则直线x0x+y0y=r2与此圆有何种位置关系?答案:圆心O(0,0)到直线x0x+y0y=r2的距离为d=r2x20+y20.∵P(x0,y0)在圆内,∴x20+y20<r.则有d>r,故直线和圆相离.44.已知P(4,-9),Q(-2,3)且Y轴与线段PQ交于M,则Q分的比为()
A.-2
B.-
C.
D.3答案:B45.已知数列{an}的前n项和Sn=an2+bn=c
(a、b、c∈R),则“c=0”是“{an}是等差数列”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件答案:数列{an}的前n项和Sn=an2+bn+c根据等差数列的前n项和的公式,可以看出当c=0时,Sn=an2+bn表示等差数列的前n项和,则数列是一个等差数列,当数列是一个等差数列时,表示前n项和时,c=0,故前者可以推出后者,后者也可以推出前者,∴前者是后者的充要条件,故选C.46.等于()
A.a
B.a2
C.a3
D.a4答案:B47.拟定从甲地到乙地通话m分钟的电话费由f(x)=1.06×(0.50×[m]+1)给出,其中m>0,[m]是大于或等于m的最小整数,若通话费为10.6元,则通话时间m∈______.答案:∵10.6=1.06(0.50×[m]+1),∴0.5[m]=9,∴[m]=18,∴m∈(17,18].故为:(17,18].48.若定义在正整数有序对集合上的二元函数f满足:①f(x,x)=x,②f(x,y)=f(y,x);③(x+y)f(x,y)=yf(x,x+y),则f(12,16)的值是()A.12B.16C.24D.48答案:依题意:∵(x+y)f(x,y)=yf(x,x+y),∴f(x,x+y)=1y(x+y)f(x,y)∴f(12,16)=f(12,12+4)=14(12+4)f(12,4)=4f(12,4)=4f(4,12)=4f(4,4+8)=4×18(4+8)f(4,8)=6f(4,8)=6f(4,4+4)=6×14(4+4)f(4,4)=12f(4,4)=12×4=48故选D49.证明不等式1+12+13+…+1n<2n(n∈N*)答案:证法一:(1)当n=1时,不等式左端=1,右端=2,所以不等式成立;(2)假设n=k(k≥1)时,不等式成立,即1+12+13+…+1k<2k,则1+12+13+…+1k+1<2k+1k+1=2k(k+1)+1k+1<k+(k+1)+1k+1=2k+1,∴当n=k+1时,不等式也成立.综合(1)、(2)得:当n∈N*时,都有1+12+13+…+1n<2n.证法二:设f(n)=2n-(1+12+13+…+1n),那么对任意k∈N*
都有:f(k+1)-f(k)=2(k+1-k)-1k+1=1k+1[2(k+1)-2k(k+1)-1]=1k+1•[(k+1)-2k(k+1)+k]=(k+1-k)2k+1>0∴f(k+1)>f(k)因此,对任意n∈N*
都有f(n)>f(n-1)>…>f(1)=1>0,∴1+12+13+…+1n<2n.50.对变量x,y
有观测数据(x1,y1)(i=1,2,…,10),得散点图1;对变量u,v
有观测数据(v1,vi)(i=1,2,…,10),得散点图2.下列说法正确的是()
A.变量x
与y
正相关,u
与v
正相关
B.变量x
与y
负相关,u
与v
正相关
C.变量x
与y
正相关,u
与v
负相关
D.变量x
与y
负相关,u
与v
负相关答案:B第3卷一.综合题(共50题)1.已知向量a=(3,4),b=(8,6),c=(2,k),其中k为常数,如果<a,c>=<b,c>,则k=______.答案:由题意可得cos<a,c>=cos<b,c>,∴a?c|a|?|c|=b?c|b|?|c|,∴6+4k54+k
2=16+6k104+k
2.解得k=2,故为2.2.已知直线l的参数方程为x=3+12ty=7+32t(t为参数),曲线C的参数方程为x=4cosθy=4sinθ(θ为参数).
(I)将曲线C的参数方程转化为普通方程;
(II)若直线l与曲线C相交于A、B两点,试求线段AB的长.答案:(I)由x=4cosθy=4sinθ得x2=16cos2θy2=16sin2θ故圆的方程为x2+y2=16.(II)把x=3+12ty=7+32t代入方程x2+y2=16,得t2+83t+36=0∴线段AB的长为|AB|=|t1-t2|=(t1+t2)2-4t1t2=43.3.如图,PT是⊙O的切线,切点为T,直线PA与⊙O交于A、B两点,∠TPA的平分线分别交直线TA、TB于D、E两点,已知PT=2,PB=3,则PA=______,TEAD=______.答案:由题意,如图可得PT2=PB×PA又由已知PT=2,PB=3,故可得PA=433又TPA的平分线分别交直线TA、TB于D、E两点,可得∠TPE=∠APD又由弦切角定理知∠PTE=∠PAD故有△PET≈△PDA故有TE:AD=PT:PA=3:2故为433,324.一个算法的流程图如图所示,则输出的S值为______.答案:根据程序框图,题意为求:s=2+4+6+8,计算得:s=20,故为:20.5.已知A,B两点的极坐标为(6,)和(8,),则线段AB中点的直角坐标为()
A.(,-)
B.(-,)
C.(,-)
D.(-,-)答案:D6.证明:已知a与b均为有理数,且a和b都是无理数,证明a+b也是无理数.答案:证明:假设a+b是有理数,则(a+b)(a-b)=a-b由a>0,b>0则a+b>0即a+b≠0∴a-b=a-ba+b∵a,bÎQ且a+b∈Q∴a-ba+b∈Q即(a-b)∈Q这样(a+b)+(a-b)=2a∈Q从而aÎQ(矛盾)∴a+b是无理数7.若点P分向量AB的比为34,则点A分向量BP的比为()A.-34B.34C.-73D.73答案:由题意可得APPB=|AP||PB|=34,故
A分BP的比为BAAP=-|BA||AP|=-4+33=-73,故选C.8.不等式ax2+bx+2>0的解集是(-,),则a+b的值是()
A.10
B.-10
C.14
D.-14答案:D9.将命题“正数a的平方大于零”改写成“若p,则q”的形式,并写出它的逆命题、否命题与逆否命题.答案:原命题可以写成:若a是正数,则a的平方大于零;逆命题:若a的平方大于零,则a是正数;否命题:若a不是正数,则a的平方不大于零;逆否命题:若a的平方不大于零,则a不是正数.10.已知点P1(3,-5),P2(-1,-2),在直线P1P2上有一点P,且|P1P|=15,则P点坐标为()
A.(-9,-4)
B.(-14,15)
C.(-9,4)或(15,-14)
D.(-9,4)或(-14,15)答案:C11.过点A(3,5)作圆C:(x-2)2+(y-3)2=1的切线,则切线的方程为______.答案:由圆的一般方程可得圆的圆心与半径分别为:(2,3);1,当切线的斜率存在,设切线的斜率为k,则切线方程为:kx-y-3k+5=0,由点到直线的距离公式可得:|2k-3-3k+5|k2+1=1解得:k=-34,所以切线方程为:3x+4y-29=0;当切线的斜率不存在时,直线为:x=3,满足圆心(2,3)到直线x=3的距离为圆的半径1,x=3也是切线方程;故为:3x+4y-29=0或x=3.12.曲线y=log2x在M=0110作用下变换的结果是曲线方程______.答案:设P(x,y)是曲线y=log2x上的任一点,P1(x′,y′)是P(x,y)在矩阵M=0110对应变换作用下新曲线上的对应点,则x′y′=0110xy=yx(3分)即x′=yy′=x,所以x=y′y=x′,(6分)将x=y′y=x′代入曲线y=log2x,得x′=log2y′,(8分)即y′=2x′曲线y=log2x在M=0110作用下变换的结果是曲线方程y=2x故为:y=2x13.已知点A(1,0,0),B(0,2,0),C(0,0,3)则平面ABC与平面xOy所成锐二面角的余弦值为______.答案:AB=(-1,2,0),AC=(-1,0,3).设平面ABC的法向量为n=(x,y,z),则n•AB=-x+2y=0n•AC=-x+3z=0,令x=2,则y=1,z=23.∴n=(2,1,23).取平面xoy的法向量m=(0,0,1).则cos<m,n>=m•n|m|
|n|=231×22+1+(23)2=27.故为27.14.已知直线l:kx-y+1+2k=0.
(1)证明l经过定点;
(2)若直线l交x轴负半轴于A,交y轴正半轴于B,△AOB的面积为S,求S的最小值并求此时直线l的方程;
(3)若直线不经过第四象限,求k的取值范围.答案:(1)由kx-y+1+2k=0,得y-1=k(x+2),所以,直线l经过定点(-2,1).(2)由题意得A(2k+1-k,0),B(0,2k+1),且2k+1-k<01+2k>0,故k>0,△AOB的面积为S=12×2k+1k×(2k+1)=4k2+4k+12k=2k+2+12k≥4,当且仅当k=12时等号成立,此时面积取最小值4,k=12,直线的方程是:x-2y+4=0.(3)由直线过定点(-2,1),可得当斜率k>0或k=0时,直线不经过第四象限.故k的取值范围为[0,+∞).15.2012年3月2日,国家环保部发布了新修订的《环境空气质量标准》.其中规定:居民区的PM2.5年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.
某城市环保部门随机抽取了一居民区去年20天PM2.5的24小时平均浓度的监测数据,数据统计如下:
组别PM2.5浓度
(微克/立方米)频数(天)频率
第一组(0,25]50.25第二组(25,50]100.5第三组(50,75]30.15第四组(75,100)20.1(Ⅰ)从样本中PM2.5的24小时平均浓度超过50微克/立方米的5天中,随机抽取2天,求恰好有一天PM2.5的24小时平均浓度超过75微克/立方米的概率;
(Ⅱ)求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由.答案:(Ⅰ)
设PM2.5的24小时平均浓度在(50,75]内的三天记为A1,A2,A3,PM2.5的24小时平均浓度在(75,100)内的两天记为B1,B2.所以5天任取2天的情况有:A1A2,A1A3,A1B1,A1B2,A2A3,A2B1,A2B2,A3B1,A3B2共10种.
…(4分)其中符合条件的有:A1B1,A1B2,A2B1,A2B2,A3B1,A3B2共6种.
…(6分)所以所求的概率P=610=35.
…(8分)(Ⅱ)去年该居民区PM2.5年平均浓度为:12.5×0.25+37.5×0.5+62.5×0.15+87.5×0.1=40(微克/立方米).…(10分)因为40>35,所以去年该居民区PM2.5年平均浓度不符合环境空气质量标准,故该居民区的环境需要改进.
…(12分)16.用反证法证明:已知x,y∈R,且x+y>2,则x,y中至少有一个大于1.答案:证明:用反证法,假设x,y均不大于1,即x≤1且y≤1,则x+y≤2,这与已知条件x+y>2矛盾,∴x,y中至少有一个大于1,即原命题得证.17.(a+b)6的展开式的二项式系数之和为______.答案:根据二项式系数的性质:二项式系数和为2n所以(a+b)6展开式的二项式系数之和等于26=64故为:64.18.如图,AB是半圆O的直径,C、D是半圆上的两点,半圆O的切线PC交AB的延长线于点P,∠PCB=25°,则∠ADC为()
A.105°
B.115°
C.120°
D.125°
答案:B19.已知平行四边形ABCD,下列正确的是()
A.
B.
C.
D.答案:B20.已知过点A(-2,m)和B(m,4)的直线与直线2x+y-1=0平行,则m的值为()
A.0
B.-8
C.2
D.10答案:B21.复数z=sin1+icos2在复平面内对应的点位于第______象限.答案:z对应的点为(sin1,cos2)∵1是第一象限的角,2是第二象限的角∵sin1>0,cos2<0所以(sin1,cos2)在第四象限故为:四22.曲线的参数方程为(t是参数),则曲线是(
)
A.线段
B.双曲线的一支
C.圆
D.射线答案:D23.若A(-2,3),B(3,-2),C(,m)三点共线
则m的值为()
A.
B.-
C.-2
D.2答案:A24.若抛物线y2=2px(p>0)的焦点与双曲线的右焦点重合,则p的值为()
A.2
B.4
C.8
D.4答案:C25.已知矩阵A=abcd,若矩阵A属于特征值3的一个特征向量为α1=11,属于特征值-1的一个特征向量为α2=1-1,则矩阵A=______.答案:由矩阵A属于特征值3的一个特征向量为α1=11可得abcd11=311,即a+b=3c+d=3;(4分)由矩阵A属于特征值2的一个特征向量为α2=1-1,可得abcd1-1=(-1)1-1,即a-b=-1c-d=1,(6分)解得a=1b=2c=2d=1,即矩阵A=1221.(10分)故为:1221.26.抛物线y2=8x的焦点坐标是______答案:抛物线y2=8x,所以p=4,所以焦点(2,0),故为(2,0)..27.某重点高中高二历史会考前,进行了五次历史会考模拟考试,某同学在这五次考试中成绩如下:90,90,93,94,93,则该同学的这五次成绩的平均值和方差分别为()
A.92,2
B.92,2.8
C.93,2
D.93,2.8答案:B28.平面直角坐标系中,O为坐标原点,设向量其中,若且0≤μ≤λ≤1,那么C点所有可能的位置区域用阴影表示正确的是()
A.
B.
C.
D.
答案:A29.已知命题p:∀x∈R,x2-x+1>0,则命题¬p
是______.答案:∵命题p:∀x∈R,x2-x+1>0,∴命题p的否定是“∃x∈R,x2-x+1≤0”故为:∃x∈R,x2-x+1≤0.30.假设两圆互相外切,求证:用连心线做直径的圆,必与前两圆的外公切线相切.答案:证明:设⊙O1及⊙O2为互相外切的两个圆,其一外公切线为A1A2,切点为A1及A2令点O为连心线O1O2的中点,过O作OA⊥A1A2,由直角梯形的中位线性质得:OA=12(O1A1+O2A2)=12O1O2,∴以O1O2为直径,即以O为圆心,OA为半径的圆必与直线A1A2相切,同理可证,此圆必切于⊙O1及⊙O2的另一条外公切线.31.若函数f(x)对任意实数x都有f(x)<f(x+1),那么()A.f(x)是增函数B.f(x)没有单调递增区间C.f(x)没有单调递减区间D.f(x)可能存在单调递增区间,也可能存在单调递减区间答案:根据函数f(x)对任意实数x都有f(x)<f(x+1),画出一个满足条件的函数图象如右图所示;根据图象可知f(x)可能存在单调递增区间,也可能存在单调递减区间故选D.32.应用反证法推出矛盾的推导过程中要把下列哪些作为条件使用()
①结论相反的判断,即假设
②原命题的条件
③公理、定理、定义等
④原结论
A.①②
B.①②④
C.①②③
D.②③答案:C33.把平面上一切单位向量的始点放在同一点,那么这些向量的终点所构成的图形是()
A.一条线段
B.一段圆弧
C.圆上一群孤立点
D.一个单位圆答案:D34.复数,且A+B=0,则m的值是()
A.
B.
C.-
D.2答案:C35.巳知椭圆{xn}与{yn}的中心在坐标原点,长轴在x轴上,离心率为32,且G上一点到G的两个焦点的距离之和为12,则椭圆G的方程为______.答案:由题设知e=32,2a=12,∴a=6,b=3,∴所求椭圆方程为x236+y29=1.:x236+y29=1.36.{,,}=是空间向量的一个基底,设=+,=+,=+,给出下列向量组:①{,,},②{,},③{,,},④{,,},其中可以作为空间向量基底的向量组有()组.
A.1
B.2
C.3
D.4答案:C37.设a、b∈R+且a+b=3,求证1+a+1+b≤10.答案:证明:证法一:(综合法)∵
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《工程伦理》课程教学大纲
- 2024年仿牌运输代理合同范本
- 2024年代装修出售房屋合同范本
- 2024年代缴报名费合同范本
- 江苏省南通市通州区2024-2025学年八年级上学期期中语文试卷(含答案解析)
- 双十一商场活动策划方案
- 《六韬·豹韬》原文及译文
- 医疗细胞公司介绍
- 【数学】指对幂函数的综合四维限时练-2024-2025学年高一上学期数学人教A版(2019)必修第一册
- 分子生物学课件
- 建筑施工安全生产治本攻坚三年行动方案(2024-2026年)
- 市政工程施工安全检查标准评分表
- 国家标准送审稿函审单
- 化工厂安全消防标志的制定
- 高低加投停及事故处理
- CKD 电子式压力开关PPG-C使用说明书
- 县农村土地确权信息纠错工作实施方案
- 关于统一使用公司手机号码的通知
- 标准吞咽功能评价量表(SSA)2页
- 用友华表伙伴商务手册.
- 心理安全网格化监管实施方案
评论
0/150
提交评论