2023年黑龙江冰雪体育职业学院高职单招(数学)试题库含答案解析_第1页
2023年黑龙江冰雪体育职业学院高职单招(数学)试题库含答案解析_第2页
2023年黑龙江冰雪体育职业学院高职单招(数学)试题库含答案解析_第3页
2023年黑龙江冰雪体育职业学院高职单招(数学)试题库含答案解析_第4页
2023年黑龙江冰雪体育职业学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩40页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年黑龙江冰雪体育职业学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.选修4-4参数方程与极坐标

在平面直角坐标系xOy中,动圆x2+y2-8xcosθ-6ysinθ+7cos2θ+8=0(θ∈R)的圆心为P(x0,y0),求2x0-y0的取值范围.答案:将圆的方程整理得:(x-4cosθ)2+(y-3sinθ)2=1由题设得x0=4cosθy0=3sinθ(θ为参数,θ∈R).所以2x0-y0=8cosθ-3sinθ=73cos(θ+φ),所以

-73≤2x0-y0≤73.2.若A为m×n阶矩阵,AB=C,则B的阶数可以是下列中的______.

①m×m,②m×n,③n×m,④n×n.答案:两个矩阵只有当前一个矩阵的列数与后一个矩阵的行数相等时,才能作乘法.矩阵A是n列矩阵,故矩阵B是n行的矩阵则B的阶数可以是③n×m,④n×n故为:③④3.若复数z=a+bi(a、b∈R)是虚数,则a、b应满足的条件是()A.a=0,b≠0B.a≠0,b≠0C.a≠0,b∈RD.b≠0,a∈R答案:∵复数z=a+bi(a、b∈R)是虚数,∴根据虚数的定义得b≠0,a∈R,故选D.4.设点P(t2+2t,1)(t>0),则|OP|(O为坐标原点)的最小值是()A.3B.5C.3D.5答案:解析:由已知得|OP|=(t2+2t)

2+1≥(2t2×2t)2+1=5,当t=2时取得等号.故选D.5.从装有2个红球和2个白球的口袋内,任取2个球,那么下面互斥而不对立的两个事件是()

A.恰有1个白球;恰有2个白球

B.至少有1个白球;都是白球

C.至少有1个白球;

至少有1个红球

D.至少有1个白球;

都是红球答案:A6.8的值为()

A.2

B.4

C.6

D.8答案:B7.已知F1=i+2j+3k,F2=2i+3j-k,F3=3i-4j+5k,若F1,F2,F3共同作用于一物体上,使物体从点M(1,-2,1)移动到N(3,1,2),则合力所作的功是______.答案:由题意可得F1=(1,2,3)F2=(2,3,-1),F3=(3,-4,5),故合力F=F1+F2+F3=(6,1,7),位移S=MN=(3,1,2)-(1,-2,1)=(2,3,1),故合力所作的功W=F•S=6×2+1×3+7×1=22故为:228.若关于x的不等式(1+k2)x≤k4+4的解集是M,则对任意实常数k,总有(

A.

B.

C.

D.,0∈M答案:A9.设x>0,y>0且x≠y,求证答案:证明略解析:由x>0,y>0且x≠y,要证明只需

即只需由条件,显然成立.∴原不等式成立10.一个口袋内有5个白球和3个黑球,任意取出一个,如果是黑球,则这个黑球不放回且另外放入一个白球,这样继续下去,直到取出的球是白球为止.求取到白球所需的次数ξ的概率分布列及期望.答案:由题意知变量的可能取值是1,2,3,4P(ξ=1)=58,P(ξ=2)=932,P(ξ=3)=21256

P(ξ=1)=3256

∴ξ的分布列是ξ1234P58932212563256∴Eξ=1×58+2×923+3×21256+4×3256=37925611.为了了解1200名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样考虑用系统抽样,则分段的间隔k为______答案:由题意知本题是一个系统抽样,总体中个体数是1200,样本容量是40,根据系统抽样的步骤,得到分段的间隔K=120040=30,故为:30.12.解下列关于x的不等式

(1)

(2)答案:(1)(2)原不等式的解集为解析:(1)

解:(2)

解:分析该题要设法去掉绝对值符号,可由去分类讨论当时原不等式等价于

故得不等式的解集为所以原不等式的解集为13.(1)求过两直线l1:7x-8y-1=0和l2:2x+17y+9=0的交点,且平行于直线2x-y+7=0的直线方程.

(2)求点A(--2,3)关于直线l:3x-y-1=0对称的点B的坐标.答案:(1)联立两条直线的方程可得:7x-8y-1=02x+17y+9=0,解得x=-1127,y=-1327所以l1与l2交点坐标是(-1127,-1327).(2)设与直线2x-y+7=0平行的直线l方程为2x-y+c=0因为直线l过l1与l2交点(-1127,-1327).所以c=13所以直线l的方程为6x-3y+1=0.点P(-2,3)关于直线3x-y-1=0的对称点Q的坐标(a,b),则b-3a+2×3=-1,且3×a-22-b+32-1=0,解得a=10且b=-1,对称点的坐标(10,-1)14.将某班的60名学生编号为:01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是______.答案:用系统抽样抽出的5个学生的号码从小到大成等差数列,随机抽得的一个号码为04则剩下的四个号码依次是16、28、40、52.故为:16、28、40、5215.已知如下等式:12=1×2×36,12+22=2×3×56,12+22+32=3×4×76,…当n∈N*时,试猜想12+22+32+…+n2的值,并用数学归纳法给予证明.答案:由已知,猜想12+22+32+…+n2=n(n+1)(2n+1)6,下面用数学归纳法给予证明:(1)当n=1时,由已知得原式成立;(2)假设当n=k时,原式成立,即12+22+32+…+k2=k(k+1)(2k+1)6,那么,当n=k+1时,12+22+32+…+(k+1)2=k(k+1)(2k+1)6+(k+1)2=(k+1)(k+2)(2k+3)6=(k+1)[(k+1)+1][2(k+1)+1]6故n=k+1时,原式也成立.由(1)、(2)知12+22+32+…+n2=n(n+1)(2n+1)6成立.16.

如图,平面内向量,的夹角为90°,,的夹角为30°,且||=2,||=1,||=2,若=λ+2

,则λ等()

A.

B.1

C.

D.2

答案:D17.经过两点A(-3,5),B(1,1

)的直线倾斜角为______.答案:因为两点A(-3,5),B(1,1

)的直线的斜率为k=1-51-(-3)=-1所以直线的倾斜角为:135°.故为:135°.18.已知点A(-1,-2),B(2,3),若直线l:x+y-c=0与线段AB有公共点,则直线l在y轴上的截距的取值范围是()

A.[-3,5]

B.[-5,3]

C.[3,5]

D.[-5,-3]答案:A19.通过随机询问110名不同的大学生是否爱好某项运动,得到如下的列联表:

男女总计爱好402060不爱好203050总计6050110为了判断爱好该项运动是否与性别有关,由表中的数据此算得k2≈7.8,因为P(k2≥6.635)≈0.01,所以判定爱好该项运动与性别有关,那么这种判断出错的可能性为______.答案:由题意知本题所给的观测值,k2≈7.8∵7.8>6.635,又∵P(k2≥6.635)≈0.01,∴这个结论有0.01=1%的机会说错,故为:1%20.对于函数y=f(x),在给定区间上有两个数x1,x2,且x1<x2,使f(x1)<f(x2)成立,则y=f(x)()A.一定是增函数B.一定是减函数C.可能是常数函数D.单调性不能确定答案:解析:由单调性定义可知,不能用特殊值代替一般值.故选D.21.已知直线l经过点A(2,4),且被平行直线l1:x-y+1=0与l2:x-y-1=0所截得的线段的中点M在直线x+y-3=0上.求直线l的方程.答案:∵点M在直线x+y-3=0上,∴设点M坐标为(t,3-t),则点M到l1、l2的距离相等,即|2t-2|2=|2t-4|2,解得t=32∴M(32,32)又l过点A(2,4),即5x-y-6=0,故直线l的方程为5x-y-6=0.22.参数方程x=sinθ+cosθy=sinθ•cosθ化为普通方程是______.答案:把x=sinθ+cosθy=sinθ•cosθ利用同角三角函数的基本关系消去参数θ,化为普通方程可得x2=1+2y,故为x2=1+2y.23.在极坐标系中,点(2,π6)到直线ρsinθ=2的距离等于______.答案:在极坐标系中,点(2

π6)化为直角坐标为(3,1),直线ρsinθ=2化为直角坐标方程为y=2,(3,1),到y=2的距离1,即为点(2

π6)到直线ρsinθ=2的距离1,故为:1.24.(Ⅰ)解关于x的不等式(lgx)2-lgx-2>0;

(Ⅱ)若不等式(lgx)2-(2+m)lgx+m-1>0对于|m|≤1恒成立,求x的取值范围.答案:(Ⅰ)∵(lgx)2-lgx-2>0,∴(lgx+1)(lgx-2)>0.∴lgx<-1或lgx>2.∴0<x<110或x>102.(Ⅱ)设y=lgx,则原不等式可化为y2-(2+m)y+m-1>0,∴y2-2y-my+m-1>0.∴(1-y)m+(y2-2y-1)>0.当y=1时,不等式不成立.设f(m)=(1-y)m+(y2-2y-1),则f(x)是m的一次函数,且一次函数为单调函数.当-1≤m≤1时,若要f(m)>0⇔f(1)>0f(-1)>0.⇔y2-2y-1+1-y>0y2-2y-1+y-1>0.⇔y2-3y>0y2-y-2>0.⇔y<0或y>3y<-1或y>2.则y<-1或y>3.∴lgx<-1或lgx>3.∴0<x<110或x>103.∴x的取值范围是(0,110)∪(103,+∞).25.设随机变量X~B(10,0.8),则D(2X+1)等于()

A.1.6

B.3.2

C.6.4

D.12.8答案:C26.若21-i=a+bi(i为虚数单位,a,b∈R),则a+b=______.答案:∵21-i=2(1+i)(1-i)(1+i)=2(1+i)2=1+i,∵21-i=a+bi∴a+bi=1+i∴a=b=1∴a+b=2.故为:227.在复数范围内解方程|z|2+(z+.z)i=3-i2+i(i为虚数单位).答案:原方程化简为|z|2+(z+.z)i=1-i,设z=x+yi(x、y∈R),代入上述方程得x2+y2+2xi=1-i,∴x2+y2=1且2x=-1,解得x=-12且y=±32,∴原方程的解是z=-12±32i.28.集合{x∈N*|

12

x

∈Z}中含有的元素个数为()

A.4

B.6

C.8

D.12答案:B29.设,,,则P,Q,R的大小顺序是(

)

A.P>Q>R

B.P>R>Q

C.Q>P>R

D.Q>R>P答案:B30.已知点O为△ABC外接圆的圆心,且有,则△ABC的内角A等于()

A.30°

B.60°

C.90°

D.120°答案:A31.若P=+,Q=+(a≥0),则P,Q的大小关系是()

A.P>Q

B.P=Q

C.P<Q

D.由a的取值确定答案:C32.否定结论“至少有一个解”的说法中,正确的是()

A.至多有一个解

B.至少有两个解

C.恰有一个解

D.没有解答案:D33.不等式log2(x+1)<1的解集为()

A.{x|0<x<1}

B.{x|-1<x≤0}

C.{x|-1<x<1}

D.{x|x>-1}答案:C34.求证:三个两两垂直的平面的交线两两垂直.答案:设三个互相垂直的平面分别为α、β、γ,且α∩β=a,β∩γ=b,γ∩α=c,三个平面的公共点为O,如图所示:在平面γ内,除点O外,任意取一点M,且点M不在这三个平面中的任何一个平面内,过点M作MN⊥c,MP⊥b,M、P为垂足,则有平面和平面垂直的性质可得MN⊥α,MP⊥β,∴a⊥MN,a⊥MP,∴a⊥平面γ.

再由b、c在平面γ内,可得a⊥b,a⊥c.同理可证,c⊥b,c⊥a,从而证得a、b、c互相垂直.35.已知a≠0,证明关于x的方程ax=b有且只有一个根.答案:证明:一方面,∵ax=b,且a≠0,方程两边同除以a得:x=ba,∴方程ax=b有一个根x=ba,另一方面,假设方程ax=b还有一个根x0且x0≠ba,则由此不等式两边同乘以a得ax0≠b,这与假设矛盾,故方程ax=b只有一个根.综上所述,方程ax=b有且只有一个根.36.已知△ABC是边长为4的正三角形,D、P是△ABC内部两点,且满足AD=14(AB+AC),AP=AD+18BC,则△APD的面积为______.答案:取BC的中点E,连接AE,根据△ABC是边长为4的正三角形∴AE⊥BC,AE=12(AB+AC)而AD=14(AB+AC),则点D为AE的中点,AD=3取AF=18BC,以AD,AF为边作平行四边形,可知AP=AD+18BC=AD+AF而△APD为直角三角形,AF=12∴△APD的面积为12×12×3=34故为:3437.设双曲线x2a2-y2b2=1(a>b>0)的半焦距为c,直线l过(a,0),(0,b)两点,已知原点到直线l的距离为34c,则双曲线的离心率为______.答案:∵直线l过(a,0),(0,b)两点,∴直线l的方程为:xa+yb=1,即bx+ay-ab=0,∵原点到直线l的距离为34c,∴|ab|a2+b2=3c4,又c2=a2+b2,∴3e4-16e2+16=0,∴e2=4,或e2=43.∵a>b>0,∴离心率为e=2或e=233;故为2或233.38.一个类似于细胞分裂的物体,一次分裂为二,两次分裂为四,如此继续分裂有限多次,而随机终止.设分裂n次终止的概率是(n=1,2,3,…).记X为原物体在分裂终止后所生成的子块数目,则P(X≤10)=()

A.

B.

C.

D.以上均不对答案:A39.如图,一个空间几何体的正视图、侧视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为2,那么

这个几何体的体积为()A.13B.23C.43D.2答案:根据三视图,可知该几何体是三棱锥,右图为该三棱锥的直观图,三棱锥的底面是一个腰长是2的等腰直角三角形,∴底面的面积是12×2×2=2垂直于底面的侧棱长是2,即高为2,∴三棱锥的体积是13×2×2=43故选C.40.命题“若a,b都是奇数,则a+b是偶数”的逆否命题是()A.若a+b不是偶数,则a,b都不是奇数B.若a+b不是偶数,则a,b不都是奇数C.若a+b是偶数,则a,b都是奇数D.若a+b是偶数,则a,b不都是奇数答案:“a,b都是奇数”的否定是“a,b不都是奇数”,“a+b是偶数”的否定是“a+b不是偶数”,故命题“若a,b都是奇数,则a+b是偶数”的逆否命题是“若a+b不是偶数,则a,b不都是奇数”.故选B.41.一个正三棱锥的底面边长等于一个球的半径,该正三棱锥的高等于这个球的直径,则球的体积与正三棱锥体积的比值为()

A.

B.

C.

D.答案:A42.已知△ABC的顶点坐标为A(3,4),B(-2,-1),C(4,5),D在BC上,且S△ABC=3S△ABD,则AD的长为______.答案:D在BC上,且S△ABC=3S△ABD,∴D点为BC边上的三等分点则D点分线段BC所成的比为12则易求出D点坐标为:x=-2+12×41+12y=-1+12×51+12∴x=0y=1故AD=32故为:3243.曲线x2+ay+2y+2=0经过点(2,-1),则a=______.答案:由题意,∵曲线x2+ay+2y+2=0经过点(2,-1),∴22-a-2+2=0∴a=4故为444.在平面直角坐标系xOy中,设F1(-4,0),F2(4,0),方程x225+y29=1的曲线为C,关于曲线C有下列命题:

①曲线C是以F1、F2为焦点的椭圆的一部分;

②曲线C关于x轴、y轴、坐标原点O对称;

③若P是上任意一点,则PF1+PF2≤10;

④若P是上任意一点,则PF1+PF2≥10;

⑤曲线C围成图形的面积为30.

其中真命题的序号是______.答案:∵x225+y29=1即为|x|5+|y|3=1表示四条线段,如图故①④错,②③对对于⑤,图形的面积为3×52×4=30,故⑤对.故为②③⑤45.设a=0.7,b=0.8,c=log30.7,则()

A.c<b<a

B.c<a<b

C.a<b<c

D.b<a<c答案:B46.已知点P的坐标为(3,4,5),试在空间直角坐标系中作出点P.答案:由P(3,4,5)可知点P在Ox轴上的射影为A(3,0,0),在Oy轴上射影为B(0,4,0),以OA,OB为邻边的矩形OACB的顶点C是点P在xOy坐标平面上的射影C(3,4,0).过C作直线垂直于xOy坐标平面,并在此直线的xOy平面上方截取5个单位,得到的就是点P.47.设O是正△ABC的中心,则向量AO,BO.CO是()

A.相等向量

B.模相等的向量

C.共线向量

D.共起点的向量答案:B48.抛物线y2=4x的焦点坐标为()

A.(0,1)

B.(1,0)

C.(0,2)

D.(2,0)答案:B49.如图,⊙O与⊙O′交于

A,B,⊙O的弦AC与⊙O′相切于点A,⊙O′的弦AD与⊙O相切于A点,则下列结论中正确的是()

A.∠1>∠2

B.∠1=∠2

C.∠1<∠2

D.无法确定

答案:B50.“△ABC中,若∠C=90°,则∠A、∠B都是锐角”的否命题为()

A.△ABC中,若∠C≠90°,则∠A、∠B都不是锐角

B.△ABC中,若∠C≠90°,则∠A、∠B不都是锐角

C.△ABC中,若∠C≠90°,则∠A、∠B都不一定是锐角

D.以上都不对答案:B第2卷一.综合题(共50题)1.我市某机构为调查2009年下半年落实中学生“阳光体育”活动的情况,设平均每人每天参加体育锻炼时间为X(单位:分钟),按锻炼时间分下列四种情况统计:①0~10分钟;②11~20分钟;③21~30分钟;④30分钟以上,有10000名中学生参加了此项活动,右图是此次调查中某一项的流程图,其输出的结果是6200,则平均每天参加体育锻炼时间在0~20分钟内的学生的频率是()A.0.62B.0.38C.6200D.3800答案:由图知输出的S的值是运动时间超过20分钟的学生人数,由于统计总人数是10000,又输出的S=6200,故运动时间不超过20分钟的学生人数是3800事件“平均每天参加体育锻炼时间在0~20分钟内的学生的”频率是380010000=0.38故选B2.设某批电子手表正品率为,次品率为,现对该批电子手表进行测试,设第X次首次测到正品,则P(X=3)等于()

A.

B.

C.

D.答案:C3.已知A(1,2),B(-3,b)两点的距离等于42,则b=______.答案:∵A(1,2),B(-3,b)∴|AB|=(-3-1)2+(b-2)2=42,解之得b=6或-2故为:6或-24.如图程序输出的结果是()

A.3,4

B.4,4

C.3,3

D.4,3

答案:B5.若a=()x,b=x3,c=logx,则当x>1时,a,b,c的大小关系式()

A.a<b<c

B.c<b<a

C.c<a<b

D.a<c<b答案:C6.已知平面向量.a,b的夹角为60°,.a=(3,1),|b|=1,则|.a+2b|=______.答案:∵平面向量.a,b的夹角为60°,.a=(3,1),∴|.a|=2.b2

再由|b|=1,可得.a?b=2×1cos60°=1,∴|.a+2b|=(.a+2b)2=a2+4a?b+4b2=23,故为23.7.(坐标系与参数方程选做题)在极坐标系(ρ,θ)(ρ>0,0≤θ<π2)中,曲线ρ=2sinθ与ρ=2cosθ的交点的极坐标为______.答案:两式ρ=2sinθ与ρ=2cosθ相除得tanθ=1,∵0≤θ<π2,∴θ=π4,∴ρ=2sinπ4=2,故交点的极坐标为(2,π4).故为:(2,π4).8.设平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k),若α∥β,则k=______.答案:∵α∥β∴平面α、β的法向量互相平行,由此可得a=(1,2,-2),b=(-2,-4,k),a∥b∴1-2=2-4=-2k,解之得k=4.故为:49.设集合A={(x,y)|x+y=6,x∈N,y∈N},使用列举法表示集合A.答案:集合A中的元素是点,点的横坐标,纵坐标都是自然数,且满足条件x+y=6.所以用列举法表示为:A={(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}.10.已知集合P={(x,y)|y=m},Q={(x,y)|y=ax+1,a>0,a≠1},如果P∩Q有且只有一个元素,那么实数m的取值范围是

______.答案:如果P∩Q有且只有一个元素,即函数y=m与y=ax+1(a>0,且a≠1)图象只有一个公共点.∵y=ax+1>1,∴m>1.∴m的取值范围是(1,+∞).故:(1,+∞)11.在边长为1的正方形ABCD中,若AB=a,BC=b,AC=c.则|a+b+2c|的值是______.答案:由题意可得|a|=|b|=1,|c|=2,a+

b=c,∴|a+b+2c|=|3c|=32,故为32.12.如图,割线PAB经过圆心O,PC切圆O于点C,且PC=4,PB=8,则△PBC的外接圆的面积为______.答案:∵PC切圆O于点C,∴根据切割线定理即可得出PC2=PA?PB,∴42=8PA,解得PA=2.∴ACCB=PAPC=12∴tanB=12∴sinB=55设△PBC的外接圆的半径为R,则455=2R,解得R=25.∴△PBC的外接圆的面积为20π故为:20π13.经过原点,圆心在x轴的负半轴上,半径等于2的圆的方程是______.答案:∵圆过原点,圆心在x轴的负半轴上,∴圆心的横坐标的相反数等于圆的半径,又∵半径r=2,∴圆心坐标为(-2,0),由此可得所求圆的方程为(x+2)2+y2=2.故为:(x+2)2+y2=214.方程4x-3×2x+2=0的根的个数是(

A.0

B.1

C.2

D.3答案:C15.下列各组集合,表示相等集合的是()

①M={(3,2)},N={(2,3)};

②M={3,2},N={2,3};

③M={(1,2)},N={1,2}.A.①B.②C.③D.以上都不对答案:①中M中表示点(3,2),N中表示点(2,3);②中由元素的无序性知是相等集合;③中M表示一个元素,即点(1,2),N中表示两个元素分别为1,2.所以表示相等的集合是②.故选B.16.根据下面的要求,求满足1+2+3+…+n>500的最小的自然数n.

(1)画出执行该问题的程序框图;

(2)以下是解决该问题的一个程序,但有2处错误,请找出错误并予以更正.答案:(12分)(1)程序框图如图:(两者选其一即可,不唯一)(2)①直到型循环结构是直到满足条件退出循环,While错误,应改成LOOP

UNTIL;②根据循环次数可知输出n+1

应改为输出n;17.4位学生与2位教师并坐合影留念,针对下列各种坐法,试问:各有多少种不同的坐法?(用数字作答)

(1)教师必须坐在中间;

(2)教师不能坐在两端,但要坐在一起;

(3)教师不能坐在两端,且不能相邻.答案:(1)先排4位学生,有A44种坐法,2位教师坐在中间,可以交换位置,有A22种坐法,则共有A22A44=48种坐法;(2)先排4位学生,有A44种坐法,2位教师坐在一起,将其看成一个整体,可以交换位置,有2种坐法,将这个“整体”插在4个学生的空位中,又由教师不能坐在两端,则有3个空位可选,则共有2A44A31=144种坐法;(3)先排4位学生,有A44种坐法,教师不能相邻,将其依次插在4个学生的空位中,又由教师不能坐在两端,则有3个空位可选,有A32种坐法,则共有A44A32=144种坐法..18.某公司一年购买某种货物400吨,每次都购买x吨,运费为4万元/次,一年的总存储费用为4x万元,要使一年的总运费与总存储费用之和最小,则x=______吨.答案:某公司一年购买某种货物400吨,每次都购买x吨,则需要购买400x次,运费为4万元/次,一年的总存储费用为4x万元,一年的总运费与总存储费用之和为400x?4+4x万元,400x?4+4x≥2(400x×4)×4x=160,当且仅当1600x=4x即x=20吨时,等号成立即每次购买20吨时,一年的总运费与总存储费用之和最小.故为:20.19.已知圆的极坐标方程为ρ=4cosθ,圆心为C,点P的极坐标为(4,π3),则|CP|=______.答案:圆的极坐标方程为ρ=4cosθ,圆的方程为:x2+y2=4x,圆心为C(2,0),点P的极坐标为(4,π3),所以P的直角坐标(2,23),所以|CP|=(2-2)2+(23-0)2=23.故为:23.20.等腰梯形ABCD,上底边CD=1,腰AD=CB=2,下底AB=3,按平行于上、下底边取x轴,则直观图A′B′C′D′的面积为

______.答案:等腰梯形ABCD,上底边CD=1,腰AD=CB=2,下底AB=3,所以梯形的高为:1,按平行于上、下底边取x轴,则直观图A′B′C′D′的高为:12sin45°=24所以直观图的面积为:12×(1+3)×24=22故为:2221.已知随机变量ξ服从正态分布N(2,σ2),且P(ξ<0)=0.2,则P(ξ>4)=()

A.0.6

B.0.4

C.0.3

D.0.2答案:D22.参数方程,(θ为参数)表示的曲线是()

A.直线

B.圆

C.椭圆

D.抛物线答案:C23.是x1,x2,…,x100的平均数,a是x1,x2,…,x40的平均数,b是x41,x42,…,x100的平均数,则下列各式正确的是()

A.=

B=

C.=a+b

D.答案:A24.已知两条直线y=ax-2和y=(a+2)x+1互相垂直,则a等于(

A.2

B.1

C.0

D.-1答案:D25.设集合M={(x,y)|x+y<0,xy>0}和P={(x,y)|x<0,y<0},那么M与P的关系为______.答案:由x+y<0,xy>0,?x<0,y<0.∴M=P.故为M=P.26.在(1+x)3+(1+x)4…+(1+x)7的展开式中,含x项的系数是______.(用数字作答)答案:(1+x)3+(1+x)4…+(1+x)7的展开式中,含x项的系数是C31+C41+C51+…+C71=25故为:2527.一平面截球面产生的截面形状是______;它截圆柱面所产生的截面形状是______.答案:根据球的几何特征,一平面截球面产生的截面形状是圆;当平面与圆柱的底面平行时,截圆柱面所产生的截面形状为圆;当平面与圆柱的底面不平行时,截圆柱面所产生的截面形状为椭圆;故为:圆,圆或椭圆28.已知直线l经过点A(2,4),且被平行直线l1:x-y+1=0与l2:x-y-1=0所截得的线段的中点M在直线x+y-3=0上.求直线l的方程.答案:∵点M在直线x+y-3=0上,∴设点M坐标为(t,3-t),则点M到l1、l2的距离相等,即|2t-2|2=|2t-4|2,解得t=32∴M(32,32)又l过点A(2,4),即5x-y-6=0,故直线l的方程为5x-y-6=0.29.甲乙两人在罚球线投球命中的概率为,甲乙两人在罚球线上各投球一次,则恰好两人都中的概率为()

A.

B.

C.

D.答案:A30.下面是一个算法的伪代码.如果输出的y的值是10,则输入的x的值是______.答案:由题意的程序,若x≤5,y=10x,否则y=2.5x+5,由于输出的y的值是10,当x≤5时,y=10x=10,得x=1;当x>5时,y=2.5x+5=10,得x=2,不合,舍去.则输入的x的值是1.故为:1.31.满足条件|2z+1|=|z+i|的复数z在复平面上对应点的轨迹是______.答案:设复数z在复平面上对应点的坐标为(x,y),由|2z+1|=|z+i|可得(2x+1)2+(2y)2=(x)2+(y+1)2,化简可得x2+

y2+43x

=

0,表示一个圆,故为圆.32.若平面向量a与b的夹角为120°,a=(2,0),|b|=1,则|a+2b|=______.答案:∵|a+2b|=(a+2b)2=a

2+4a?b+4

b2=|a|2+4|a||b|cos<a,b>+4|b|2=22+4×2×1cos120°+4×1=2.故为:233.已知向量a、b的夹角为60°,且|a|=2,|b|=1,则|a+2b|=______;向量a与向量a+2b的夹角的大小为______.答案:∵a?b=|a|?|b|cos60°=1,∴|a+2b|=(a+2b)2=4+4+4a?b=23,设向量a与向量a+2b的夹角的大小为θ,∵a?(a+2b)=2×23cosθ=43cosθ,a?(a+2b)=a2+2a?b=4+2=6,∴43cosθ=6,cosθ=32,∴θ=30°,故为23,30°.34.某商场举行购物抽奖促销活动,规定每位顾客从装有编号为0,1,2,3四个相同小球的抽奖箱中,每次取出一球记下编号后放回,连续取两次,若取出的两个小球号码相加之和等于6则中一等奖,等于5中二等奖,等于4或3中三等奖.

(1)求中三等奖的概率;

(2)求中奖的概率.答案:(1)设“中三等奖”为事件A,“中奖”为事件B,从四个小球中有放回的取两个共有(0,0),(0,1),(0,2),(0,3),(1,0),(1,1)(1,2),(1,3),(2,0),(2,1),(2,2),(2,3),(3,0),(3,1),(3,2),(3,3)16种不同的结果两个小球号码相加之和等于4的取法有3种:(1,3),(2,2),(3,1)两个小球号相加之和等于3的取法有4种:(0,3),(1,2),(2,1),(3,0)由互斥事件的加法公式得:P(A)=316+416=716,即中三等奖的概率为716;(2)两个小球号码相加之和等于3的取法有4种;(0,3),(1,2),(2,1),(3,0)两个小球相加之和等于4的取法有3种;(1,3),(2,2),(3,1)两个小球号码相加之和等于5的取法有2种:(2,3),(3,2)两个小球号码相加之和等于6的取法有1种:(3,3)由互斥事件的加法公式得:P(B)=116+216+316+416=58.即中奖的概率为:58.35.已知点M的极坐标为,下列所给四个坐标中能表示点M的坐标是()

A.

B.

C.

D.答案:D36.为如图所示的四块区域涂色,要求相邻区域不能同色,现有3种不同颜色可供选择,则共有______种不同涂色方案(要求用具体数字作答).答案:由题意,首先给左上方一个涂色,有三种结果,再给最左下边的上面的涂色,有两种结果,右上方,如果与左下边的同色,则右方的涂色,有两种结果,右上方,如果与左下边的不同色,则右方的涂色,有1种结果,∴根据分步计数原理得到共有3×2×(2+1)=18种结果,故为18.37.来自中国、英国、瑞典的乒乓球裁判各两名,执行北京奥运会的一号、二号和三号场地的乒乓球裁判工作,每个场地由两名来自不同国家的裁判组成,则不同的安排方案总数有()

A.12种

B.48种

C.90种

D.96种答案:B38.若函数y=f(x)的定义域是[12,2],则函数y=f(log2x)的定义域为______.答案:由题意知12≤log2x≤2,即log22≤log2x≤log24,∴2≤x≤4.故为:[2,4].39.若把A、B、C、D、E、F、G七人排成一排,则A、B必须相邻,且C、D不能相邻的概率是______(结果用数值表示).答案:把AB看成一个整体,CD不能相邻,就用插空法,则有A22A44A25种方法把A、B、C、D、E、F、G七人排成一排,随便排的种数A77所以概率为A22A44A25A77=421故为:421.40.用反证法证明“a+b=1”时的反设为()

A.a+b>1且a+b<1

B.a+b>1

C.a+b>1或a+b<1

D.a+b<1答案:C41.定义平面向量之间的一种运算“⊙”如下:对任意的=(m,n),=(p,q)

,令⊙=mq-np,下面说法错误的序号是()

①若若a与共线,则⊙=0

②⊙=⊙a

③对任意的λ∈R,有(λ)⊙=λ(⊙)

④(⊙)2+(a)2=||2||2

A.②

B.①②

C.②④

D.③④答案:A42.实数变量m,n满足m2+n2=1,则坐标(m+n,mn)表示的点的轨迹是()

A.抛物线

B.椭圆

C.双曲线的一支

D.抛物线的一部分答案:A43.利用计算机在区间(0,1)上产生两个随机数a和b,则方程有实根的概率为()

A.

B.

C.

D.1答案:A44.若|a|=3、|b|=4,且a⊥b,则|a+b|=______.答案:∵|a|=3,|b|=4,且a⊥b,∴|a+b|=a2+2a?b+b2=9+0+16=5.故为:5.45.(几何证明选讲选做题)

如图,已知PA是圆O的切线,切点为A,直线PO交圆O于B,C两点,AC=2,∠PAB=120°,则切线PA的长度等于______.答案:∵∠PAB=120°,∴优弧ACB=240°,∴劣弧AB=120°,∴∠ACB=60°,又∵OA=OC故∠AOP=60°,OA=AC=2,∠又∵PA是圆O的切线,切点为A,∴∠OAP=90°∴PA=3OA=23故为:2346.考虑坐标平面上以O(0,0),A(3,0),B(0,4)为顶点的三角形,令C1,C2分别为△OAB的外接圆、内切圆.请问下列哪些选项是正确的?

(1)C1的半径为2

(2)C1的圆心在直线y=x上

(3)C1的圆心在直线4x+3y=12上

(4)C2的圆心在直线y=x上

(5)C2的圆心在直线4x+3y=6上.答案:O,A,B三点的位置如右图所示,C1,C2为△OAB的外接圆与内切圆,∵△OAB为直角三角形,∴C1为以线段AB为直径的圆,故半径为12|AB|=52,所以(1)选项错误;又C1的圆心为线段AB的中点(32,2),此点在直线4x+3y=12上,所以选项(2)错误,选项(3)正确;如图,P为△OAB的内切圆C2的圆心,故P到△OAB的三边距离相等均为圆C2的半径r.连接PA,PB,PC,可得:S△OAB=S△POA+S△PAB+S△POB?12×3×4=12×3×r+12×5×r+12×4×r?r=1故P的坐标为(1,1),此点在y=x上.所以选项(4)正确,选项(5)错误,综上,正确的选项有(3)、(4).47.O为△ABC平面上一定点,该平面上一动点p满足M={P|OP=OA+λ(AB|AB|sinC+AC|AC|sinB)

,λ>0},则△ABC的()一定属于集合M.A.重心B.垂心C.外心D.内心答案:如图:D是BC的中点,在△ABC中,由正弦定理得,|AB|sinC=|AC|sinB即sinc|AB|=sinB||AC|,设t=sinc|AB|=sinB||AC|,代入OP=OA+λ(AB|AB|sinC+AC|AC|sinB)得,OP=OA+λt(AB+AC)①,∵D是BC的中点,∴AB+AC=2AD,代入①得,OP=OA+2λtAD,∴AP=2λtAD且λ、t都是常数,则AP∥AD,∴点P得轨迹是直线AD,△ABC的重心一定属于集合M,故选A.48.已知在平面直角坐标系xOy中,圆C的参数方程为x=3+3cosθy=1+3sinθ,(θ为参数),以Ox为极轴建立极坐标系,直线l的极坐标方程为pcos(θ+π6)=0.

(1)写出直线l的直角坐标方程和圆C的普通方程;

(2)求圆C截直线l所得的弦长.答案:(1)消去参数θ,得圆C的普通方程为(x-3)2+(y-1)2=9.(2分)由ρcos(θ+π6)=0,得32ρcosθ-12ρsinθ=0,∴直线l的直角坐标方程为3x-y=0.(5分)(2)圆心(3,1)到直线l的距离为d=|3×3-1|(3)2+12=1.(7分)设圆C直线l所得弦长为m,则m2=r2-d2=9-1=22,∴m=42.(10分)49.设向量=(0,2),=,则,的夹角等于(

A.

B.

C.

D.答案:A50.P为△ABC内一点,且PA+3PB+7PC=0,则△PAC与△ABC面积的比为______.答案:(如图)分别延长

PB、PC

B1、C1,使

PB1=3PB,PC1=7PC,则由已知可得:PA+PB1+PC1=0,故点P是三角形

AB1C1

的重心,设三角形

AB1C1

的面积为

3S,则S△APC1=S△APB1=S△PB1C1=S,而S△APC=17S△APC1=S7,S△ABP=13S△APB1=S3,S△PBC=13×17S△PB1C1=S21,所以△PAC与△ABC面积的比为:S7S7+S3+S21=311,故为:311第3卷一.综合题(共50题)1.已知直线l1,l2的夹角平分线所在直线方程为y=x,如果l1的方程是ax+by+c=0(ab>0),那么l2的方程是()

A.bx+ay+c=0

B.ax-by+c=0

C.bx+ay-c=0

D.bx-ay+c=0答案:A2.若正四面体ABCD的棱长为1,M是AB的中点,则MC

•MD

=______.答案:在正四面体中,因为M是AB的中点,所以CM=12(CA+CB),DM=12(DA+DB),所以CM⋅DM=12(CA+CB)⋅12(DA+DB)=14(CA⋅DA+CB⋅DA+CA⋅DB+CB⋅DB)=14(1×1×cos60∘+0+0+1×1×cos60∘)=14×1=14.所以MC

•MD

=CM⋅DM=14.故为:

1

4

.3.向量a=(2,-1,4)与b=(-1,1,1)的夹角的余弦值为______.答案:∵a•b=-2-1+4=1,|a|=22+1+42=21,|b|=3.∴cos<a,b>=a•b|a|

|b|=121•3=721.故为721.4.已知向量,,则“=λ,λ∈R”成立的必要不充分条件是()

A.+=

B.与方向相同

C.⊥

D.∥答案:D5.已知向量,满足:||=3,||=5,且=λ,则实数λ=()

A.

B.

C.±

D.±答案:C6.为了调查甲、乙两个网站受欢迎的程度,随机选取了14天,统计上午8:00-10:00间各自的点击量,得如下所示的统计图,根据统计图:

(1)甲、乙两个网站点击量的极差,中位数分别是多少?

(2)甲网站点击量在[10,40]间的频率是多少?(结果用分数表示)

(3)甲、乙两个网站哪个更受欢迎?并说明理由。答案:解:(1)甲网站的极差为73-8=65,乙网站的极差为71-5=66;甲网站的中位数是56.5,乙网站的中位数是36.5。(2)甲网站点击量在[10,40]间的频率是;(3)甲网站的点击量集中在茎叶图的下方,而乙网站的点击量集中在茎叶图的上方,从数据的分布情况来看,甲网站更受欢迎。7.

如图,已知PA为⊙O的切线,PBC为⊙O的割线,PA=6,PB=BC,⊙O的半径OC=5,那么弦BC的弦心距OM=()

A.4

B.3

C.5

D.6

答案:A8.一个总体中有100个个体,随机编号为0,1,2,3,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k号码的个位数字相同,若m=6,则在第7组中抽取的号码是()

A.66

B.76

C.63

D.73答案:C9.若直线ax+by+1=0与圆x2+y2=1相离,则点P(a,b)的位置是()

A.在圆上

B.在圆外

C.在圆内

D.以上都有可能答案:C10.解不等式logx(2x+1)>logx2.答案:当0<x<1,logx(2x+1)>logx2?0<2x+1<20<x<1,解得0<x<12;当x>1,logx(2x+1)>logx2?2x+1>2x>1,解得x>1.综上所述,原不等式的解集为{x|0<x<12或x>1}.11.设e1,e2为单位向量.且e1、e2的夹角为π3,若a=e1+3e2,b=2e1,则向量a在b方向上的射影为______.答案:∵e1、e2为单位向量,且e1和e2的夹角θ等于π3,∴e1?e2=1×1×cosπ3=12.∵a=e1+3e2,b=2e1,∴a?b=(e1+3e2)?(2e1)=2e12+6e1?e2=2+3=5.∴a在b上的射影为a?b|b|=52,故为52.12.化简的结果是()

A.a2

B.a

C.a

D.a答案:C13.为了调查某产品的销售情况,销售部门从下属的92家销售连锁店中抽取30家了解情况.若用系统抽样法,则抽样间隔和随机剔除的个体数分别为()

A.3,2

B.2,3

C.2,30

D.30,2答案:A14.已知双曲线的两条准线将两焦点间的线段三等分,则双曲线的离心率是______.答案:由题意可得2c×13=2a2c,∴3a2=c2,∴e=ca=3,故为:3.15.直线(3+4)x+(4-6)y-14-2=0(∈R)恒过定点A,则点A的坐标为(

)。答案:(2,-1)16.已知:|.a|=1,|.b|=2,<a,b>=60°,则|a+b|=______.答案:由题意|a+b|2=(a+b)2=a2+2b?a+b2=1+4+2×2×1×cos<a,b>=5+2=7∴|a+b|=7故为717.如图,弯曲的河流是近似的抛物线C,公路l恰好是C的准线,C上的点O到l的距离最近,且为0.4千米,城镇P位于点O的北偏东30°处,|OP|=10千米,现要在河岸边的某处修建一座码头,并修建两条公路,一条连接城镇,一条垂直连接公路l,以便建立水陆交通网.

(1)建立适当的坐标系,求抛物线C的方程;

(2)为了降低修路成本,必须使修建的两条公路总长最小,请给出修建方案(作出图形,在图中标出此时码头Q的位置),并求公路总长的最小值(精确到0.001千米)答案:(1)过点O作准线的垂线,垂足为A,以OA所在直线为x轴,OA的垂直平分线为y轴,建立平面直角坐标系…(2分)由题意得,p2=0.4…(4分)所以,抛物线C:y2=1.6x…(6分)(2)设抛物线C的焦点为F由题意得,P(5,53)…(8分)根据抛物线的定义知,公路总长=|QF|+|QP|≥|PF|≈9.806…(12分)当Q为线段PF与抛物线C的交点时,公路总长最小,最小值为9.806千米…(16分)18.已知集合{2x,x+y}={7,4},则整数x=______,y=______.答案:∵{2x,x+y}={7,4},∴2x=4x+y=7或2x=7x+y=4解得x=2y=5或x=3.5y=0.5不是整数,舍去故为:2,519.甲、乙两人对一批圆形零件毛坯进行成品加工.根据需求,成品的直径标准为100mm.现从他们两人的产品中各随机抽取5件,测得直径(单位:mm)如下:

甲:105

102

97

96

100

乙:100

101

102

97

100

(I)分别求甲、乙的样本平均数与方差,并由此估计谁加工的零件较好?

(Ⅱ)若从乙样本的5件产品中再次随机抽取2件,试求这2件产品中至少有一件产品直径为100mm的概率.答案:(Ⅰ).x甲=15(105+102+97+96+100)=100,.x乙=15(100+101+102+97+100)=100S甲=15(25+4+3+16+0)=545=10.8,S乙=15(0+1+4+9+0)=145=2.8.∵S甲>S乙,据此估计乙加工的零件好;(Ⅱ)从乙样本的5件产品中再次随机抽取2件的全部结果有如下10种:(100,101),(100,102),(100,97),(100,100),(101,102),(101,97),(101,100),(102,97),(102,100),(97,100).设事件A为“其中至少有一件产品直径为100”,则时间A有7种.故P(A)=710.20.某班一天上午安排语、数、外、体四门课,其中体育课不能排在第一、第四节,则不同排法的种数为()A.24B.22C.20D.12答案:先排体育课,有2种排法,再排语、数、外三门课,有A33种排法,按乘法原理,不同排法的种数为2×A33=12.故选D.21.如图,圆与圆内切于点,其半径分别为与,圆的弦交圆于点(不在上),求证:为定值。

答案:见解析解析:考察圆的切线的性质、三角形相似的判定及其性质,容易题。证明:由弦切角定理可得22.将两个数a=8,b=17交换,使a=17,b=8,下面语句正确一组是()

A.

B.

C.

D.

答案:B23.如图,从圆O外一点P引圆O的切线PA和割线PBC,已知PA=22,PC=4,圆心O到BC的距离为3,则圆O的半径为______.答案:∵PA为圆的切线,PBC为圆的割线,由线割线定理得:PA2=PB?PC又∵PA=22,PC=4,∴PB=2,BC=2又∵圆心O到BC的距离为3,∴R=2故为:224.把点按向量平移到点,则的图象按向量平移后的图象的函数表达式为(

).A.B.C.D.答案:D解析:,由可得,所以平移后的函数解析式为25.给定椭圆C:x2a2+y2b2=1(a>b>0),称圆心在原点O、半径是a2+b2的圆为椭圆C的“准圆”.已知椭圆C的一个焦点为F(2,0),其短轴的一个端点到点F的距离为3.

(1)求椭圆C和其“准圆”的方程;

(2)过椭圆C的“准圆”与y轴正半轴的交点P作直线l1,l2,使得l1,l2与椭圆C都只有一个交点,求l1,l2的方程;

(3)若点A是椭圆C的“准圆”与x轴正半轴的交点,B,D是椭圆C上的两相异点,且BD⊥x轴,求AB•AD的取值范围.答案:(1)由题意可得:a=3,c=2,b=1,∴r=(3)2+12=2.∴椭圆C的方程为x23+y2=1,其“准圆”的方程为x2+y2=4;(2)由“准圆”的方程为x2+y2=4,令y=0,解得x=±2,取P(2,0),设过点P且与椭圆相切的直线l的方程为my=x-2,联立my=x-2x23+y2=1,消去x得到关于y的一元二次方程(3+m2)x2+4m+1=0,∴△=16m2-4(3+m2)=0,解得m=±1,故直线l1、l2的方程分别为:y=x-2,y=-x+2.(3)由“准圆”的方程为x2+y2=4,令y=0,解得x=±2,取点A(2,0).设点B(x0,y0),则D(x0,-y0).∴AB•AD=(x0-2,y0)•(x0-2,-y0)=(x0-2)2-y02,∵点B在椭圆x23+y2=1上,∴x023+y02=1,∴y02=1-x023,∴AD•AB=(x0-2)2-1+x023=43(x0-32)2,∵-3<x0<3,∴0≤43(x0-32)2<7+43,∴0≤AD•AB<7+43,即AD•AB的取值范围为[0,7+43)26.参数方程为t为参数)表示的曲线是()

A.一条直线

B.两条直线

C.一条射线

D.两条射线答案:D27.满足{1,2}∪A={1,2,3}的集合A的个数为______.答案:由{1,2}∪A={1,2,3},所以A={3},或{1,3},或{2,3},或{1,2,3}.所以集合A的个数为4.28.若复数z=(m2-1)+(m+1)i为纯虚数,则实数m的值等于______.答案:复数z=(m2-1)+(m+1)i当z是纯虚数时,必有:m2-1=0且m+1≠0解得,m=1.故为1.29.下列表述正确的是()

①归纳推理是由部分到整体的推理;

②归纳推理是由一般到一般的推理;

③演绎推理是由一般到特殊的推理;

④类比推理是由特殊到一般的推理;

⑤类比推理是由特殊到特殊的推理.

A.①②③

B.②③④

C.②④⑤

D.①③⑤答案:D30.已知:如图,⊙O1与⊙O2外切于C点,AB一条外公切线,A、B分别为切点,连接AC、BC.设⊙O1的半径为R,⊙O2的半径为r,若tan∠ABC=,则的值为()

A.

B.

C.2

D.3

答案:C31.已知空间四点A(4,1,3),B(2,3,1),C(3,7,-5),D(x,-1,3)共面,则x的值为[

]A

.4

B.1

C.10

D.11答案:D32.如图,AB是圆O的直径,CD是圆O的弦,AB与CD交于E点,且AE:EB=3:1、CE:ED=1:1,CD=83,则直径AB的长为______.答案:由CE:ED=1:1,CD=83,∴CE=ED=43由相交弦定理可得AE?EB=CE?ED及AE:EB=3:1∴3EB2=43?43=48解得EB=4,AE=12∴AB=AE+EB=16故为:1633.将正方形ABCD沿对角线BD折起,使平面ABD⊥平面CBD,E是CD中点,则∠AED的大小为()

A.45°

B.30°

C.60°

D.90°答案:D34.中,是边上的中线(如图).

求证:.

答案:证明见解析解析:取线段所在的直线为轴,点为原点建立直角坐标系.设点的坐标为,点的坐标为,则点的坐标为.可得,,,.,..35.设△ABC是边长为1的正三角形,则|CA+CB|=______.答案:∵△ABC是边长为1的正三角形,∴|CA|=1,|CB|=1,CA?CB=1×1×cosπ3=12∴|CA+CB|=CA2+2CA?CB+CB2=1+1+

2×12=3,故为:336.已知抛物线x2=4y上的点p到焦点的距离是10,则p点坐标是

______.答案:根据抛物线方程可求得焦点坐标为(0,1)根据抛物线定义可知点p到焦点的距离与到准线的距离相等,∴yp+1=10,求得yp=9,代入抛物线方程求得x=±6∴p点坐标是(±6,9)故为:(±6,9)37.已知椭圆C:+y2=1的右焦点为F,右准线l,点A∈l,线段AF交C于点B.若=3,则=(

A.

B.2

C.

D.3答案:A38.频率分布直方图的重心是()

A.众数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论