版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年鹤岗师范高等专科学校高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.一个容量为n的样本,分成若干组,已知某数的频数和频率分别为40、0.125,则n的值为()A.640B.320C.240D.160答案:由频数、频率和样本容量之间的关系得到,40n=0.125,∴n=320.故选B.2.9、从4台甲型和5台乙型电视机中任意取出3台,其中至少要有甲型与乙型电视机各1台,则不同的取法共有()
A.140种
B.84种
C.70种
D.35种答案:C3.(本题10分)设函数的定义域为A,的定义域为B.(1)求A;
(2)若,求实数a的取值范围答案:(1);(2)。解析:略4.已知椭圆的焦点是F1、F2,P是椭圆上的一个动点,如果延长F1P到Q,使得|PQ|=|PF2|,那么动点Q的轨迹是______.答案:解析:∵|PF1|+|PF2|=2a,|PQ|=|PF2|,∴|PF1|+|PF2|=|PF1|+|PQ|=2a,即|F1Q|=2a,∴动点Q到定点F1的距离等于定长2a,故动点Q的轨迹是圆.故:圆.5.已知平行四边形的三个顶点A(-2,1),B(-1,3),C(3,4),求第四个顶点D的坐标.答案:若构成的平行四边形为ABCD1,即AC为一条对角线,设D1(x,y),则由AC中点也是BD1中点,可得
-2+32=x-121+42=y+32,解得
x=2y=2,∴D1(2,2).同理可得,若构成以AB为对角线的平行四边形ACBD2,则D2(-6,0);以BC为对角线的平行四边形ACD3B,则D3(4,6),∴第四个顶点D的坐标为:(2,2),或(-6,0),或(4,6).6.某种肥皂原零售价每块2元,凡购买2块以上(包括2块),商场推出两种优惠销售办法。第一种:一块肥皂按原价,其余按原价的七折销售;第二种:全部按原价的八折销售。你在购买相同数量肥皂的情况下,要使第一种方法比第二种方法得到的优惠多,最少需要买(
)块肥皂。
A.5
B.2
C.3
D.4答案:D7.对某种电子元件进行寿命跟踪调查,所得样本频率分布直方图如图,由图可知:一批电子元件中,寿命在100~300小时的电子元件的数量与寿命在300~600小时的电子元件的数量的比大约是()A.12B.13C.14D.16答案:由于已知的频率分布直方图中组距为100,寿命在100~300小时的电子元件对应的矩形的高分别为:12000,32000则寿命在100~300小时的电子元件的频率为:100?(12000+32000)=0.2寿命在300~600小时的电子元件对应的矩形的高分别为:1400,1250,32000则寿命在300~600小时子元件的频率为:100?(1400+1250+32000)=0.8则寿命在100~300小时的电子元件的数量与寿命在300~600小时的电子元件的数量的比大约是0.2:0.8=14故选C8.参数方程x=2cosαy=3sinα(a为参数)化成普通方程为______.答案:∵x=2cosαy=3sinα,∴cosα=x2sinα=y3∴(x2)2+(y3)2=cos2α+sin2α=1.即:参数方程x=2cosαy=3sinα化成普通方程为:x24+y29=1.故为:x24+y29=1.9.已知a、b均为单位向量,它们的夹角为60°,那么|a+3b|=()
A.
B.
C.
D.4答案:C10.如图,弯曲的河流是近似的抛物线C,公路l恰好是C的准线,C上的点O到l的距离最近,且为0.4千米,城镇P位于点O的北偏东30°处,|OP|=10千米,现要在河岸边的某处修建一座码头,并修建两条公路,一条连接城镇,一条垂直连接公路l,以便建立水陆交通网.
(1)建立适当的坐标系,求抛物线C的方程;
(2)为了降低修路成本,必须使修建的两条公路总长最小,请给出修建方案(作出图形,在图中标出此时码头Q的位置),并求公路总长的最小值(精确到0.001千米)答案:(1)过点O作准线的垂线,垂足为A,以OA所在直线为x轴,OA的垂直平分线为y轴,建立平面直角坐标系…(2分)由题意得,p2=0.4…(4分)所以,抛物线C:y2=1.6x…(6分)(2)设抛物线C的焦点为F由题意得,P(5,53)…(8分)根据抛物线的定义知,公路总长=|QF|+|QP|≥|PF|≈9.806…(12分)当Q为线段PF与抛物线C的交点时,公路总长最小,最小值为9.806千米…(16分)11.把函数y=4x的图象按平移到F′,F′的函数解析式为y=4x-2-2,则向量的坐标等于_____答案:(2,-2)解析:把函数y=4x的图象按平移到F′,F′的函数解析式为y=4x-2-2,则向量的坐标等于_____12.现有一个关于平面图形的命题:如图,同一个平面内有两个边长都是a的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为a24.类比到空间,有两个棱长均为a的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为______.答案:∵同一个平面内有两个边长都是a的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为a24,类比到空间有两个棱长均为a的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为a38,故为a38.13.如图,一个空间几何体的正视图、侧视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为2,那么
这个几何体的体积为()A.13B.23C.43D.2答案:根据三视图,可知该几何体是三棱锥,右图为该三棱锥的直观图,三棱锥的底面是一个腰长是2的等腰直角三角形,∴底面的面积是12×2×2=2垂直于底面的侧棱长是2,即高为2,∴三棱锥的体积是13×2×2=43故选C.14.若关于x的不等式(1+k2)x≤k4+4的解集是M,则对任意实常数k,总有(
)
A.
B.
C.
D.,0∈M答案:A15.已知F1,F2为椭圆x2a2+y2b2=1(a>b>0)的两个焦点,过F2作椭圆的弦AB,若△AF1B的周长为16,椭圆的离心率为e=32,则椭圆的方程为______.答案:根据椭圆的定义,△AF1B的周长为16可知,4a=16,∴a=4,∵e=32,∴c=23,∴b=2,∴椭圆的方程为x216+y24=1,故为x216+y24=116.已知A(1,0).B(7,8),若点A和点B到直线l的距离都为5,且满足上述条件的直线l共有n条,则n的值是()A.1B.2C.3D.4答案:与直线AB平行且到直线l的距离都为5的直线共有两条,分别位于直线AB的两侧,由线段AB的长度等于10,还有一条直线是线段AB的中垂线,故满足上述条件的直线l共有3条,故选C.17.若kxy-8x+9y-12=0表示两条直线,则实数k的值及两直线所成的角分别是()
A.8,60°
B.4,45°
C.6,90°
D.2,30°答案:C18.
已知抛物线y2=2px(p>0)的焦点为F,过F的直线交y轴正半轴于点P,交抛物线于A,B两点,其中点A在第一象限,若,,,则μ的取值范围是()
A.[1,]
B.[,2]
C.[2,3]
D.[3,4]答案:B19.已知点P为△ABC所在平面上的一点,且,其中t为实数,若点P落在△ABC的内部,则t的取值范围是()
A.
B.
C.
D.答案:D20.棱长为2的正方体ABCD-A1B1C1D1中,=(
)
A.
B.4
C.
D.-4答案:D21.已知点P(3,m)在以点F为焦点的抛物线x=4t2y=4t(t为参数)上,则|PF|的长为______.答案:∵抛物线x=4t2y=4t(t为参数)上,∴y2=4x,∵点P(3,m)在以点F为焦点的抛物线x=4t2y=4t(t为参数)上,∴m2=4×3=12,∴P(3,23)∵F(1,0),∴|PF|=22+(23)2=4,故为4.22.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘的序号______
答案:(1)游戏盘的中奖概率为
38,(2)游戏盘的中奖概率为
14,(3)游戏盘的中奖概率为
26=13,(4)游戏盘的中奖概率为
13,(1)游戏盘的中奖概率最大.故为:(1).23.已知△ABC中,过重心G的直线交边AB于P,交边AC于Q,设AP=pPB,AQ=qQC,则pqp+q=()A.1B.3C.13D.2答案:取特殊直线PQ使其过重心G且平行于边BC∵点G为重心∴APPB=AQQC=21∵AP=pPB,AQ=qQC∴p=2,q=2∴pqp+q=44=1故选项为A24.若直线l:ax+by=1与圆C:x2+y2=1有两个不同交点,则点P(a,b)与圆C的位置关系是(
)
A.点在圆上
B.点在圆内
C.点在圆外
D.不能确定答案:C25.为了考察两个变量x和y之间的线性相关性,甲、乙两位同学各自独立地做10次和15次试验,并且利用线性回归方法,求得回归直线分别为l1和l2,已知两个人在试验中发现对变量x的观测数据的平均值都是s,对变量y的观测数据的平均值都是t,那么下列说法正确的是()
A.l1和l2必定平行
B.l1与l2必定重合
C.l1和l2有交点(s,t)
D.l1与l2相交,但交点不一定是(s,t)答案:C26.设向量a=(1,0),b=(sinθ,cosθ),0≤θ≤π,则|a+b|的最大值为
______.答案:|a|=1因为|b|=1,所以|a+b|2=a2+b2+2a?b=2+2sinθ因为0≤θ≤π,所以0≤sinθ≤1,所以2+2sinθ≤4,|a+b|≤2故为:227.螺母是由
______和
______两个简单几何体构成的.答案:根据螺母的结构特征知,是由正六棱柱里面挖去的一个圆柱构成的,故为:正六棱柱,圆柱.28.(本题满分12分)
已知:
求证:答案:.证明:…………2分由于=………………5分…………①………………6分由于………②……………8分同理:…………③……………10分①+②+③得:即原不等式成立………………12分解析:同答案29.已知向量a=2e1-3e2,b=2e1+3e2,其中e1、e2不共线,向量c=2e1-9e2.问是否存在这样的实数λ、μ,使向量d=λa+μb与c共线?答案:∵d=λ(2e1-3e2)+μ(2e1+3e2)=(2λ+2μ)e1+(-3λ+3μ)e2,若d与c共线,则存在实数k≠0,使d=kc,即(2λ+2μ)e1+(-3λ+3μ)e2=2ke1-9ke2,由2λ+2μ=2k-3λ+3μ=-9k得λ=-2μ.故存在这样的实数λ、μ,只要λ=-2μ,就能使d与c共线.30.若一元二次方程ax2+2x+1=0有一个正根和一个负根,则有
A.a<0
B.a>0
C.a<-1
D.a>1答案:A31.已知a=0.80.7,b=0.80.9,c=1.20.8,则a、b、c按从小到大的顺序排列为
______.答案:由指数函数y=0.8x知,∵0.7<0.9,∴0.80.9<0.80.7<1,即b<a,又c=1.20.8>1,∴b<a<c.b<a<c32.4名同学分别报名参加学校的足球队,篮球队,乒乓球队,每人限报其中的一个运动队,不同报法的种数是()
A.34
B.43
C.24
D.12答案:A33.已知三个数a=60.7,b=0.76,c=log0.76,则a,b,c从小到大的顺序为______.答案:因为a=60.7>60=1,b=0.76<0.70=1,且b>0,c=log0.76<0,所以c<b<a.故为c<b<a.34.(坐标系与参数方程选做题)在极坐标系中,点M(ρ,θ)关于极点的对称点的极坐标是______.答案:由点的极坐标的意义可得,点M(ρ,θ)关于极点的对称点到极点的距离等于ρ,极角为π+θ,故点M(ρ,θ)关于极点的对称点的极坐标是(ρ,π+θ),故为(ρ,π+θ).35.已知三角形ABC的一个顶点A(2,3),AB边上的高所在的直线方程为x-2y+3=0,角B的平分线所在的直线方程为x+y-4=0,求此三角形三边所在的直线方程.答案:由题意可得AB边的斜率为-2,由点斜式求得AB边所在的直线方程为y-3=-2(x-2),即2x+y-7=0.由2x+y-7=0x+y-4=0
求得x=3y=1,故点B的坐标为(3,1).设点A关于角B的平分线所在的直线方程为x+y-4=0的对称点为M(a,b),则M在BC边所在的直线上.则由b-3a-2=-1a+22+b+32-4=0
求得a=1b=2,故点M(1,2),由两点式求得BC的方程为y-12-1=x-31-3,即x+2y-5=0.再由x-2y+3=0x+2y-5=0求得点C的坐标为(2,52),由此可得得AC的方程为x=2.36.若P=+,Q=+(a≥0),则P,Q的大小关系是()
A.P>Q
B.P=Q
C.P<Q
D.由a的取值确定答案:C37.已知f(n)=1+12+13+L+1n(n∈N*),用数学归纳法证明f(2n)>n2时,f(2k+1)-f(2k)等于______.答案:因为假设n=k时,f(2k)=1+12+13+…+12k,当n=k+1时,f(2k+1)=1+12+13+…+12k+12k+1+…+12k+1∴f(2k+1)-f(2k)=12k+1+12k+2+…+12k+1故为:12k+1+12k+2+…+12k+138.甲、乙两人破译一种密码,它们能破译的概率分别为和,求:
(1)恰有一人能破译的概率;(2)至多有一人破译的概率;
(3)若要破译出的概率为不小于,至少需要多少甲这样的人?答案:(1)(2)(3)至少需4个甲这样的人才能满足题意.解析:(1)设A为“甲能译出”,B为“乙能译出”,则A、B互相独立,从而A与、与B、与均相互独立.“恰有一人能译出”为事件,又与互斥,则(2)“至多一人能译出”的事件,且、、互斥,∴(3)设至少需要n个甲这样的人,而n个甲这样的人译不出的概率为,∴n个甲这样的人能译出的概率为,由∴至少需4个甲这样的人才能满足题意.39.已知椭圆的中心在原点,对称轴为坐标轴,焦点在x轴上,短轴的一个顶点B与两个焦点F1,F2组成的三角形的周长为4+23,且∠F1BF2=2π3,求椭圆的标准方程.答案::设长轴长为2a,焦距为2c,则在△F2OB中,由∠F2BO=π3得:c=32a,所以△F2BF1的周长为2a+2c=2a+3a=4+23,∴a=2,c=3,∴b2=1;故所求椭圆的标准方程为x24+y2=1.40.到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是()
A.直线
B.椭圆
C.抛物线
D.双曲线答案:D41.过点(-1,3)且垂直于直线x-2y+3=0的直线方程为(
)
A.2x+y-1=0
B.2x+y-5=0
C.x+2y-5=0
D.x-2y+7=0答案:A42.一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱.这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等.设四棱锥、三棱锥、三棱柱的高分别为h1,h2,h,则h1:h2:h3=()
A.:1:1
B.:2:2
C.:2:
D.:2:答案:B43.若把A、B、C、D、E、F、G七人排成一排,则A、B必须相邻,且C、D不能相邻的概率是______(结果用数值表示).答案:把AB看成一个整体,CD不能相邻,就用插空法,则有A22A44A25种方法把A、B、C、D、E、F、G七人排成一排,随便排的种数A77所以概率为A22A44A25A77=421故为:421.44.l1,l2,l3是空间三条不同的直线,则下列命题正确的是[
]A.l1⊥l2,l2⊥l3l1∥l3
B.l1⊥l2,l2∥l3l1⊥l3
C.l1∥l2∥l3l1,l2,l3共面
D.l1,l2,l3共点l1,l2,l3共面答案:B45.要考察某种品牌的850颗种子的发芽率,抽取60粒进行实验.利用随机数表抽取种子时,先将850颗种子按001,002,…,850进行编号,如果从随机数表第8行第11列的数1开始向右读,请你依次写出最先检测的4颗种子的编号______,______,______,______.
(下面摘取了随机数表第7行至第9行的一部分)
84
42
17
53
31
57
24
55
06
88
77
04
74
47
67
21
76
33
50
25
63
01
63
78
59
16
95
55
67
19
98
10
50
71
75
12
86
73
58
07
44
39
52
38
79
33
21
12
34
29
78
64
56
07
82
52
42
07
44
38.答案:由于随机数表中第8行的数字为:63
01
63
78
59
16
95
5567
19
98
10
50
71
75
12
86
73
58
07其第11列数字为1,故产生的第一个数字为:169,第二个数字为:555,第三个数字为:671,第四个数字为:998(超出编号范围舍)第五个数字为:105故为:169,555,671,10546.已知原点O(0,0),则点O到直线4x+3y+5=0的距离等于
______.答案:利用点到直线的距离公式得到d=|5|42+32=1,故为1.47.若直线的参数方程为(t为参数),则该直线的斜率为()
A.
B.2
C.1
D.-1答案:D48.证明:等腰三角形底边上任意一点到两腰的距离之和等于一腰上的高.答案:证明见解析:建立如图所示的直角坐标系.设,,其中,.则直线的方程为,直线的方程为.设底边上任意一点为,则到的距离;到的距离;到的距离.因为,所以,结论成立.49.O、A、B、C为空间四个点,又为空间的一个基底,则()
A.O、A、B、C四点共线
B.O、A、B、C四点共面,但不共线
C.O、A、B、C四点中任意三点不共线
D.O、A、B、C四点不共面答案:D50.柱坐标(2,,5)对应的点的直角坐标是
。答案:()解析:∵柱坐标(2,,5),且,2,∴对应直角坐标是()第2卷一.综合题(共50题)1.一圆形纸片的圆心为点O,点Q是圆内异于O点的一定点,点A是圆周上一点.把纸片折叠使点A与Q重合,然后展平纸片,折痕与OA交于P点.当点A运动时点P的轨迹是()A.圆B.椭圆C.双曲线D.抛物线答案:如图所示,由题意可知:折痕l为线段AQ的垂直平分线,∴|AP|=|PQ|,而|OP|+|PA|=|OA|=R,∴|PO|+|PQ|=R定值>|OQ|.∴当点A运动时点P的轨迹是以点O,D为焦点,长轴长为R的椭圆.故选B.2.(几何证明选讲选做题)如图,⊙O中,直径AB和弦DE互相垂直,C是DE延长线上一点,连接BC与圆0交于F,若∠CFE=α(α∈(0,π2)),则∠DEB______.答案:∵直径AB和弦DE互相垂直∴AB平分DE∴BD=BE,∠D=∠BED∵DEFB四点共圆∴∠EFC=∠D=α∴∠DEB=α故为:α3.下列几何体各自的三视图中,有且仅有两个视图相同的是()
A.①②B.①③C.①④D.②④答案:正方体的三视图都相同,而三棱台的三视图各不相同,圆锥和正四棱锥的,正视图和侧视图相同,所以,正确为D.故选D4.设O是正△ABC的中心,则向量AO,BO.CO是()
A.相等向量
B.模相等的向量
C.共线向量
D.共起点的向量答案:B5.在如图所示的茎叶图中,甲、乙两组数据的中位数分别是______.答案:由茎叶图可得甲组共有9个数据中位数为45乙组共9个数据中位数为46故为45、466.对于非零的自然数n,抛物线y=(n2+n)x2-(2n+1)x+1与x轴相交于An,Bn两点,若以|AnBn|表示这两点间的距离,则|A1B1|+|A2B2|+|A3B3|+┅+|A2009B2009|的值
等于______.答案:令(n2+n)x2-(2n+1)x+1=0,得x1=1n,x2=1n+1所以An(1n,0),Bn(1n+1,0)所以|AnBn|=1n-1n+1,所以|A1B1|+|A2B2|+|A3B3|+┅+|A2009B2009|=(11-12)+(12-13)+┉+(12009-12010)=1-12010=20092010.故为:20092010.7.把下列命题写成“若p,则q”的形式,并指出条件与结论.
(1)相似三角形的对应角相等;
(2)当a>1时,函数y=ax是增函数.答案:(1)若两个三角形相似,则它们的对应角相等.条件p:三角形相似,结论q:对应角相等.(2)若a>1,则函数y=ax是增函数.条件p:a>1,结论q:函数y=ax是增函数.8.若向量、、满足++=,=3,=1,=4,则等于(
)
A.-11
B.-12
C.-13
D.-14答案:C9.平面向量与的夹角为60°,=(1,0),||=1,则|+2|=(
)
A.7
B.
C.4
D.12答案:B10.(Ⅰ)已知z∈C,且|z|-i=.z+2+3i(i为虚数单位),求复数z2+i的虚部.
(Ⅱ)已知z1=a+2i,z2=3-4i(i为虚数单位),且z1z2为纯虚数,求实数a的值.答案:(Ⅰ)设z=x+yi,代入方程|z|-i=.z+2+3i,得出x2+y2-i=x-yi+2+3i=(x+2)+(3-y)i,故有x2+y2=x+23-y=-1,解得x=3y=4,∴z=3+4i,复数z2+i=3+4i2+i=2+i,虚部为1(Ⅱ)z1z2=a+2i3-4i=3a-8+(4a+6)i25,且z1z2为纯虚数则3a-8=0,且4a+6≠0,解得a=8311.4名学生参加3项不同的竞赛,则不同参赛方法有()A.34B.A43C.3!D.43答案:由题意知本题是一个分步计数问题,首先第一名学生从三种不同的竞赛中选有三种不同的结果,第二名学生从三种不同的竞赛中选有3种结果,同理第三个和第四个同学从三种竞赛中选都有3种结果,∴根据分步计数原理得到共有3×3×3×3=34故选A.12.(选做题)方程ρ=cosθ与(t为参数)分别表示何种曲线(
)。答案:圆,双曲线13.在下列图象中,二次函数y=ax2+bx+c与函数(的图象可能是()
A.
B.
C.
D.
答案:A14.极坐标系中,若A(3,π3),B(-3,π6),则s△AOB=______(其中O是极点).答案:∵极坐标系中,A(3,π3),B(-3,π6),3cosπ3=32,3sinπ3=332;-3cosπ6=-332,-3sinπ6=-32.∴在平面直角坐标系中,A(32,332),B(-332,-32),∴OA=(32,332),OB=(-332,-32),∴|OA|
=
3,|OB|=3,∴cos<OA,OB>=-934-93494+274=-32,∴sin<OA,OB>=1-34=12,∴S△AOB=12×3×3×12=94.故为:94.15.若点P(a,b)在圆C:x2+y2=1的外部,则直线ax+by+1=0与圆C的位置关系是()
A.相切
B.相离
C.相交
D.相交或相切答案:C16.一张纸上画有一个半径为R的圆O和圆内一个定点A,且OA=a,折叠纸片,使圆周上某一点A′刚好与点A重合.这样的每一种折法,都留下一条折痕.当A′取遍圆周上所有点时,求所有折痕所在直线上点的集合.答案:对于⊙O上任意一点A′,连AA′,作AA′的垂直平分线MN,连OA′,交MN于点P,则OP+PA=OA′=R.由于点A在⊙O内,故OA=a<R.从而当点A′取遍圆周上所有点时,点P的轨迹是以O、A为焦点,OA=a为焦距,R(R>a)为长轴的椭圆C.而MN上任一异于P的点Q,都有OQ+QA=OQ+QA′>OA′,故点Q在椭圆C外,即折痕上所有的点都在椭圆C上及C外.反之,对于椭圆C上或外的一点S,以S为圆心,SA为半径作圆,交⊙O于A′,则S在AA′的垂直平分线上,从而S在某条折痕上.最后证明所作⊙S与⊙O必相交.1°
当S在⊙O外时,由于A在⊙O内,故⊙S与⊙O必相交;2°
当S在⊙O内时(例如在⊙O内,但在椭圆C外或其上的点S′),取过S′的半径OD,则由点S′在椭圆C外,故OS′+S′A≥R(椭圆的长轴).即S′A≥S′D.于是D在⊙S′内或上,即⊙S′与⊙O必有交点.于是上述证明成立.综上可知,折痕上的点的集合为椭圆C上及C外的所有点的集合.17.P是直线3x+y+1=0上一点,P到点Q(0,2)距离的最小值是______.答案:过点Q作直线的垂线段,当P是垂足时,线段PQ最短,故最小距离是点Q(0,2)到直线3x+y+1=0的距离d,d=|0+2+1|3+1=32=1.5.∴P到点Q(0,2)距离的最小值是1.5;故为1.5.18.某公司一年购买某种货物400吨,每次都购买x吨,运费为4万元/次,一年的总存储费用为4x万元,要使一年的总运费与总存储费用之和最小,则x=______吨.答案:某公司一年购买某种货物400吨,每次都购买x吨,则需要购买400x次,运费为4万元/次,一年的总存储费用为4x万元,一年的总运费与总存储费用之和为400x?4+4x万元,400x?4+4x≥2(400x×4)×4x=160,当且仅当1600x=4x即x=20吨时,等号成立即每次购买20吨时,一年的总运费与总存储费用之和最小.故为:20.19.给出下列四个命题,其中正确的一个是()
A.在线性回归模型中,相关指数R2=0.80,说明预报变量对解释变量的贡献率是80%
B.在独立性检验时,两个变量的2×2列联表中对角线上数据的乘积相差越大,说明这两个变量没有关系成立的可能性就越大
C.相关指数R2用来刻画回归效果,R2越小,则残差平方和越大,模型的拟合效果越好
D.线性相关系数r的绝对值越接近于1,表明两个随机变量线性相关性越强答案:D20.设双曲线的渐近线方程为2x±3y=0,则双曲线的离心率为______.答案:∵双曲线的渐近线方程是2x±3y=0,∴知焦点是在x轴时,ba=23,设a=3k,b=2k,则c=13k,∴e=133.焦点在y轴时ba=32,设a=2k,b=3k,则c=13k,∴e=132.故为:133或13221.设P点在x轴上,Q点在y轴上,PQ的中点是M(-1,2),则|PQ|等于______.答案:设P(a,0),Q(0,b),∵PQ的中点是M(-1,2),∴由中点坐标公式得a+02=-10+b2=2,解之得a=-2b=4,因此可得P(-2,0),Q(0,4),∴|PQ|=(-2-0)2+(0-4)2=25.故为:2522.抛物线y2=4x的焦点坐标为()
A.(0,1)
B.(1,0)
C.(0,2)
D.(2,0)答案:B23.抛物线y2=4px(p>0)的准线与x轴交于M点,过点M作直线l交抛物线于A、B两点.
(1)若线段AB的垂直平分线交x轴于N(x0,0),求证:x0>3p;
(2)若直线l的斜率依次为p,p2,p3,…,线段AB的垂直平分线与x轴的交点依次为N1,N2,N3,…,当0<p<1时,求1|N1N2|+1|N2N3|+…+1|N10N11|的值.答案:(1)证明:设直线l方程为y=k(x+p),代入y2=4px.得k2x2+(2k2p-4p)x+k2p2=0.△=4(k2p-2p)2-4k2•k2p2>0,得0<k2<1.令A(x1,y1)、B(x2,y2),则x1+x2=-2k2p-4pk2,y1+y2=k(x1+x2+2p)=4pk,AB中点坐标为(2P-k2Pk2,2pk).AB垂直平分线为y-2pk=-1k(x-2P-k2Pk2).令y=0,得x0=k2P+2Pk2=p+2Pk2.由上可知0<k2<1,∴x0>p+2p=3p.∴x0>3p.(2)∵l的斜率依次为p,p2,p3,时,AB中垂线与x轴交点依次为N1,N2,N3,(0<p<1).∴点Nn的坐标为(p+2p2n-1,0).|NnNn+1|=|(p+2p2n-1)-(p+2p2n+1)|=2(1-p2)p2n+1,1|NnNn+1|=p2n+12(1-p2),所求的值为12(1-p2)[p3+p4++p21]=p3(1-p19)2(1-p)2(1+p).24.(选做题)方程ρ=cosθ与(t为参数)分别表示何种曲线(
)。答案:圆,双曲线25.不等式≥0的解集为[-2,3∪[7,+∞,则a-b+c的值是(
)A.2B.-2C.8D.6答案:B解析:∵-a、b的值为-2,7中的一个,x≠c
c=3∴a-b=-(b-a)=-(-2+7)=-5a-b+c=-5+3=-2
选B评析:考察考生对不等式解集的结构特征的理解,关注不等式中等号与不等号的关系。26.如果命题“曲线C上的点的坐标都是方程f(x,y)=0的解”是正确的,则下列命题中正确的是()
A.曲线C是方程f(x,y)=0的曲线
B.方程f(x,y)=0的每一组解对应的点都在曲线C上
C.不满足方程f(x,y)=0的点(x,y)不在曲线C上
D.方程f(x,y)=0是曲线C的方程答案:C27.为研究变量x和y的线性相关性,甲、乙二人分别作了研究,利用线性回归方法得到回归直线方程l1和l2,两人计算知.x相同,.y也相同,下列正确的是()A.l1与l2一定重合B.l1与l2一定平行C.l1与l2相交于点(.x,.y)D.无法判断l1和l2是否相交答案:∵两个人在试验中发现对变量x的观测数据的平均值都是s,对变量y的观测数据的平均值都是t,∴两组数据的样本中心点是(.x,.y)∵回归直线经过样本的中心点,∴l1和l2都过(.x,.y).故选C.28.不等式log12(x2-2x-15)>log12(x+13)的解集为______.答案:满足log0.5(x2-2x-15)>log0.5(x+13),得x2-2x-15<x+13x2-2x-15>0x+13>0解得:-4<x<-3,或5<x<7,则不等式log12(x2-2x-15)>log12(x+13)的解集为(-4,-3)∪(5,7)故为:(-4,-3)∪(5,7).29.老师在班级50名学生中,依次抽取学号为5,10,15,20,25,30,35,40,45,50的学和进行作业检查,这种抽样方法是()
A.随机抽样
B.分层抽样
C.系统抽样
D.以上都是答案:C30.若集合A={x|3≤x<7},B={x|2<x<10},则A∪B=______.答案:因为集合A={x|3≤x<7},B={x|2<x<10},所以A∪B={x|3≤x<7}∪{x|2<x<10}={x|2<x<10},故为:{x|2<x<10}.31.某海域有A、B两个岛屿,B岛在A岛正东40海里处.经多年观察研究发现,某种鱼群洄游的路线像一个椭圆,其焦点恰好是A、B两岛.曾有渔船在距A岛正西20海里发现过鱼群.某日,研究人员在A、B两岛同时用声纳探测仪发出不同频率的探测信号(传播速度相同),A、B两岛收到鱼群反射信号的时间比为5:3.你能否确定鱼群此时分别与A、B两岛的距离?答案:以AB的中点为原点,AB所在直线为x轴建立直角坐标系设椭圆方程为:x2a2+y2b2=1(a>b>0)且c=a2-b2------(3分)因为焦点A的正西方向椭圆上的点为左顶点,所以a-c=20------(5分)又|AB|=2c=40,则c=20,a=40,故b=203------(7分)所以鱼群的运动轨迹方程是x21600+y21200=1------(8分)由于A,B两岛收到鱼群反射信号的时间比为5:3,因此设此时距A,B两岛的距离分别为5k,3k-------(10分)由椭圆的定义可知5k+3k=2×40=80⇒k=10--------(13分)即鱼群分别距A,B两岛的距离为50海里和30海里.------(14分)32.已知函数f(x)=x2+px+q与函数y=f(f(f(x)))有一个相同的零点,则f(0)与f(1)()
A.均为正值
B.均为负值
C.一正一负
D.至少有一个等于0答案:D33.下列在曲线上的点是()
A.
B.
C.
D.答案:D34.已知O是空间任意一点,A、B、C、D四点满足任三点均不共线,但四点共面,且=2x+3y+4z,则2x+3y+4z=(
)答案:﹣135.设斜率为2的直线l过抛物线y2=ax(a>0)的焦点F,且和y轴交于点A,若△OAF(O为坐标原点)的面积为4,则抛物线的方程为______.答案:焦点坐标(a4,0),|0F|=a4,直线的点斜式方程y=2(x-a4)在y轴的截距是-a2S△OAF=12×a4×a2=4∴a2=64,∵a>0∴a=8,∴y2=8x故为:y2=8x36.某小组有3名女生、4名男生,从中选出3名代表,要求至少女生与男生各有一名,共有______种不同的选法.(要求用数字作答)答案:由题意知本题是一个分类计数问题,要求至少女生与男生各有一名有两个种不同的结果,即一个女生两个男生和一个男生两个女生,∴共有C31C42+C32C41=30种结果,故为:3037.参数方程x=sinθ+cosθy=sinθ•cosθ化为普通方程是______.答案:把x=sinθ+cosθy=sinθ•cosθ利用同角三角函数的基本关系消去参数θ,化为普通方程可得x2=1+2y,故为x2=1+2y.38.过点A(1,4)且在x、y轴上的截距相等的直线共有______条.答案:当直线过坐标原点时,方程为y=4x,符合题意;当直线不过原点时,设直线方程为x+y=a,代入A的坐标得a=1+4=5.直线方程为x+y=5.所以过点A(1,4)且在x、y轴上的截距相等的直线共有2条.故为2.39.已知Sn=1+12+13+14+…+12n(n>1,n∈N*).求证:S2n>1+n2(n≥2,n∈N*).答案:证明:(1)当n=2时,左边=1+12+13+14=2512,右边=1+22=2,∴左边>右边(2)假设n=k(k≥2)时不等式成立,即S
2k=1+12+13+14+…+12k≥1+k2,当n=k+1时,不等式左边S2(k+1)=1+12+13+14+…+12k+1+…+12k+1>1+k2+12k+1+…+12k+1>1+k2+2k2k+2k=1+k2+12=1+k+12,综上(1)(2)可知S2n>1+n2对于任意的n≥2正整数成立.40.若已知A(1,1,1),B(-3,-3,-3),则线段AB的长为()
A.4
B.2
C.4
D.3答案:A41.设函数f(x)=ax(a>0,a≠1),如果f(x1+x2+…+x2009)=8,那么f(2x1)×f(2x2)×…×f(2x2009)的值等于()A.32B.64C.16D.8答案:f(x1+x2+…+x2009)=8可得ax1+x2+…+x2009=8f(2x1)×f(2x2)×…×f(2x2009)=a2(x1+x2+…+x2009)=82=64故选B.42.直线l过椭圆x24+y23=1的右焦点F2并与椭圆交与A、B两点,则△ABF1的周长是()A.4B.6C.8D.16答案:根据题意结合椭圆的定义可得:|AF1|+|AF2|=2a=4,,并且|BF1|+|BF2|=2a=4,又因为|AF2|+|BF2|=|AB|,所以△ABF1的周长为:|AF1|+|BF1|+|AB|=|AF1|+|AF2|+|BF1|+|BF2|=4a=8.故选C.43.下列物理量中,不能称为向量的是()A.质量B.速度C.位移D.力答案:既有大小,又有方向的量叫做向量;质量只有大小没有方向,因此质量不是向量.而速度、位移、力既有大小,又有方向,因此它们都是向量.故选A.44.利用“直接插入排序法”给按从大到小的顺序排序,
当插入第四个数时,实际是插入哪两个数之间(
)A.与B.与C.与D.与答案:B解析:先比较与,得;把插入到,得;把插入到,得;45.若函数y=f(x)是函数y=ax(a>0且a≠1)的反函数,且y=f(x)的图象过点(2,1),则f(x)=______.答案:因为函数y=f(x)是函数y=ax(a>0且a≠1)的反函数,且y=f(x)的图象过点(2,1),所以函数y=ax经过(1,2),所以a=2,所以函数y=f(x)=log2x.故为:log2x.46.已知当m∈R时,函数f(x)=m(x2-1)+x-a的图象和x轴恒有公共点,求实数a的取值范围.答案:(1)m=0时,f(x)=x-a是一次函数,它的图象恒与x轴相交,此时a∈R.(2)m≠0时,由题意知,方程mx2+x-(m+a)=0恒有实数解,其充要条件是△=1+4m(m+a)=4m2+4am+1≥0.又只需△′=(4a)2-16≤0,解得-1≤a≤1,即a∈[-1,1].∴m=0时,a∈R;m≠0时,a∈[-1,1].47.设直线l与平面α相交,且l的方向向量为a,α的法向量为n,若<a,n>=,则l与α所成的角为()
A.
B.
C.
D.答案:C48.半径分别为1和2的两圆外切,作半径为3的圆与这两圆均相切,一共可作()个.
A.2
B.3
C.4
D.5答案:D49.某种肥皂原零售价每块2元,凡购买2块以上(包括2块),商场推出两种优惠销售办法。第一种:一块肥皂按原价,其余按原价的七折销售;第二种:全部按原价的八折销售。你在购买相同数量肥皂的情况下,要使第一种方法比第二种方法得到的优惠多,最少需要买(
)块肥皂。
A.5
B.2
C.3
D.4答案:D50.在120个零件中,一级品24个,二级品36个,三级品60个.用系统抽样法从中抽取容量为20的样本、则每个个体被抽取到的概率是()
A.
B.
C.
D.答案:D第3卷一.综合题(共50题)1.抛物线y=4x2的焦点坐标是()
A.(0,1)
B.(0,)
C.(1,0)
D.(,0)答案:B2.已知A、B、C三点不共线,O是平面ABC外的任一点,下列条件中能确定点M与点A、B、C一定共面的是()A.OM=OA+OB+OCB.OM=2OA-OB-OCC.OM=OA+12OB+13OCD.OM=13OA+13OB+13OC答案:由共面向量定理OM=m•OA+n•OB+p•OC,m+n+p=1,说明M、A、B、C共面,可以判断A、B、C都是错误的,则D正确.故选D.3.现有以下两项调查:①某校高二年级共有15个班,现从中选择2个班,检查其清洁卫生状况;②某市有大型、中型与小型的商店共1500家,三者数量之比为1:5:9.为了调查全市商店每日零售额情况,抽取其中15家进行调查.完成①、②这两项调查宜采用的抽样方法依次是()A.简单随机抽样法,分层抽样法B.系统抽样法,简单随机抽样法C.分层抽样法,系统抽样法D.系统抽样法,分层抽样法答案:从15个班中选择2个班,检查其清洁卫生状况;总体个数不多,而且差异不大,故可采用简单随机抽样的方法,1500家大型、中型与小型的商店的每日零售额存在较大差异,故可采用分层抽样的方法故完成①、②这两项调查宜采用的抽样方法依次是简单随机抽样法,分层抽样法故选A4.已知向量,,则“,λ∈R”成立的必要不充分条件是()
A.
B与方向相同
C.
D.答案:D5.“a>1”是“1a<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:由1a<1得:当a>0时,有1<a,即a>1;当a<0时,不等式恒成立.所以1a<1?a>1或a<0从而a>1是1a<1的充分不必要条件.故应选:A6.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为()
A.35
B.25
C.15
D.7答案:C7.现有编号分别为1,2,3,4,5,6,7,8,9的九道不同的数学题,某同学从这九道题中一次随机抽取两道题,每题被抽到的概率是相等的,用符号(x,y)表示事件“抽到两题的编号分别为x,y,且x<y”.
(1)共有多少个基本事件?并列举出来.
(2)求该同学所抽取的两道题的编号之和小于17但不小于11的概率.答案:(1)共有36种基本事件,列举如下:(1,2),(1,3),(1,4),(1,5),(1,6),(1,7)(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9);(2)设事件A=“两道题的编号之和小于17但不小于11”则事件A包含事件有:(2,9),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9)共15种.∴P(A)=1536=512.8.直线3x+5y-1=0与4x+3y-5=0的交点是()
A.(-2,1)
B.(-3,2)
C.(2,-1)
D.(3,-2)答案:C9.某简单几何体的三视图如图所示,其正视图.侧视图.俯视图均为直角三角形,面积分别是1,2,4,则这个几何体的体积为()A.83B.43C.8D.4答案:由三视图知几何体是一个三棱锥,设出三棱锥的三条两两垂直的棱分别是x,y,z∴xy=2
①xz=4
②yz=8
③由①②得z=2y
④∴y=2∴以y为高的底面面积是2,∴三棱锥的体积是13×2×2=43故选B.10.(理)已知函数f(x)=sinπxx∈[0,1]log2011xx∈(1,+∞)若满足f(a)=f(b)=f(c),(a、b、c互不相等),则a+b+c的取值范围是______.答案:作出函数的图象如图,直线y=y0交函数图象于如图,由正弦曲线的对称性,可得A(a,y0)与B(b,y0)关于直线x=12对称,因此a+b=1当直线线y=y0向上平移时,经过点(2011,1)时图象两个图象恰有两个公共点(A、B重合)所以0<y0<1时,两个图象有三个公共点,此时满足f(a)=f(b)=f(c),(a、b、c互不相等),说明1<c<2011,因此可得a+b+c∈(2,2012)故为(2,2012)11.一平面截球面产生的截面形状是______;它截圆柱面所产生的截面形状是______.答案:根据球的几何特征,一平面截球面产生的截面形状是圆;当平面与圆柱的底面平行时,截圆柱面所产生的截面形状为圆;当平面与圆柱的底面不平行时,截圆柱面所产生的截面形状为椭圆;故为:圆,圆或椭圆12.给出下列问题:
(1)求面积为1的正三角形的周长;
(2)求键盘所输入的三个数的算术平均数;
(3)求键盘所输入两个数的最小数;
(4)求函数f(x)=2xx2(x≥3)(x<3)当自变量取相应值时的函数值.
其中不需要用条件语句描述的算法的问题有()A.1个B.2个C.3个D.4个答案:(1)求面积为1的正三角形的周长用顺序结构即可,故不需要用条件语句描述;(2)求键盘所输入的三个数的算术平均数用顺序结构即可解决问题,不需要用条件语句描述;(3)求键盘所输入两个数的最小数,由于要作出判断,找出最小数,故本问题的解决要用到条件语句描述;(4)求函数f(x)=2xx2(x≥3)(x<3)当自变量取相应值时的函数值,由于此函数是一个分段函数,所以要用条件结构选择相应的函数解析式,需要用条件语句描述.综上,(3)(4)两个问题要用到条件语句描述,(1),(2)不需要用条件语句描述故选B13.圆柱的底面积为S,侧面展开图为正方形,那么这个圆柱的侧面积为()A.πSB.2πSC.3πSD.4πS答案:设圆柱的底面半径是R,母线长是l,∵圆柱的底面积为S,侧面展开图为正方形,∴πR2=S,且l=2πR,∴圆柱的侧面积为2πRl=4πS.故选D.14.在直角坐标系xOy中,直线l的参数方程为x=3-22ty=5+22t(t为参数).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=25sinθ.
(I)求圆C的参数方程;
(II)设圆C与直线l交于点A,B,求弦长|AB|答案:(Ⅰ)∵ρ=25sinθ,∴ρ2=25ρsinθ…(1分)所以,圆C的直角坐标方程为x2+y2-25y=0,即x2+(y-5)2=5…(3分)所以,圆C的参数方程为x=5cosθy=5+5sinθ(θ为参数)
…(4分)(Ⅱ)将直线l的参数方程代入圆C的直角坐标方程,得(3-22t)2+(22t)2=5即t2-32t+4=0…(5分)设两交点A,B所对应的参数分别为t1,t2,则t1+t2=32t1t2=4…(7分)∴|AB|=|t1-t2|=(t1+t2)2-4t1t2=18-16=2…(8分)15.已知空间三点的坐标为A(1,5,-2),B(2,4,1),C(p,3,q+2),若A,B,C三点共线,则p=______,q=______.答案:∵A(1,5,-2),B(2,4,1),C(p,3,q+2),∴AB=(1,-1,3),AC=(p-1,-2,q+4)∵A,B,C三点共线,∴AB=λAC∴(1,-1,3)=λ(p-1,-2,q+4),∴1=λ(p-1)-1=-2λ,3=λ(q+4),∴λ=12,p=3,q=2,故为:3;216.已知当抛物线型拱桥的顶点距水面2米时,量得水面宽8米.当水面升高1米后,水面宽度是______米.答案:由题意,建立如图所示的坐标系,抛物线的开口向下,设抛物线的标准方程为x2=-2py(p>0)∵顶点距水面2米时,量得水面宽8米∴点(4,-2)在抛物线上,代入方程得,p=4∴x2=-8y当水面升高1米后,y=-1代入方程得:x=±22∴水面宽度是42米故为:4217.不等式lgxx<0的解集是______.答案:∵lgx的定义域为(0,+∞)∴x>0∵lgxx<0∴lgx<0=lg1即0<x<1∴不等式lgxx<0的解集是{x|0<x<1}故为:{x|0<x<1}18.抽样方法有()A.随机抽样、系统抽样和分层抽样B.随机数法、抽签法和分层抽样法C.简单随机抽样、分层抽样和系统抽样D.系统抽样、分层抽样和随机数法答案:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而抽签法和随机数法,只是简单随机抽样的两种不同抽取方法故选C19.|a|=4,|b|=5,|a+b|=8,则a与b的夹角为______.答案:设a与b的夹角为θ因为|a|=4,|b|=5,|a+b|=8,所以a2+2a?b+b2=64即16+2×4×5cosθ+25=64解得cosθ=2340所以θ=arccos2340故为arccos234020.已知在平面直角坐标系xOy中,圆C的参数方程为x=3+3cosθy=1+3sinθ,(θ为参数),以Ox为极轴建立极坐标系,直线l的极坐标方程为pcos(θ+π6)=0.
(1)写出直线l的直角坐标方程和圆C的普通方程;
(2)求圆C截直线l所得的弦长.答案:(1)消去参数θ,得圆C的普通方程为(x-3)2+(y-1)2=9.(2分)由ρcos(θ+π6)=0,得32ρcosθ-12ρsinθ=0,∴直线l的直角坐标方程为3x-y=0.(5分)(2)圆心(3,1)到直线l的距离为d=|3×3-1|(3)2+12=1.(7分)设圆C直线l所得弦长为m,则m2=r2-d2=9-1=22,∴m=42.(10分)21.已知某几何体的三视图如图,画出它的直观图,求该几何体的表面积和体积.答案:由三视图可知:该几何体是由下面长、宽、高分别为4、4、2的长方体,上面为高是2、底面是边长分别为4、4的矩形的四棱锥,而组成的几何体.它的直观图如图.∴S表面积=4×2×4+4×4+4×12×4×22=48+162.V体积=4×4×2+13×4×4×2=1283.22.如图,PT是⊙O的切线,切点为T,直线PA与⊙O交于A、B两点,∠TPA的平分线分别交直线TA、TB于D、E两点,已知PT=2,PB=3,则PA=______,TEAD=______.答案:由题意,如图可得PT2=PB×PA又由已知PT=2,PB=3,故可得PA=433又TPA的平分线分别交直线TA、TB于D、E两点,可得∠TPE=∠APD又由弦切角定理知∠PTE=∠PAD故有△PET≈△PDA故有TE:AD=PT:PA=3:2故为433,3223.在吸烟与患肺病这两个分类变量的计算中,“若x2的观测值为6.635,我们有99%的把握认为吸烟与患肺病有关系”这句话的意思是指()
A.在100个吸烟的人中,必有99个人患肺病
B.有1%的可能性认为推理出现错误
C.若某人吸烟,则他有99%的可能性患有肺病
D.若某人患肺病,则99%是因为吸烟答案:B24.若方程Ax2+By2=1表示焦点在y轴上的双曲线,则A、B满足的条件是()
A.A>0,且B>0
B.A>0,且B<0
C.A<0,且B>0
D.A<0,且B<0答案:C25.8的值为()
A.2
B.4
C.6
D.8答案:B26.如图,△ABC中,AD=2DB,AE=3EC,CD与BE交于F,若AF=xAB+yAC,则()A.x=13,y=12B.x=14,y=13C.x=37,y=37D.x=25,y=920答案:过点F作FM∥AC、FN∥AB,分别交AB、AC于点M、N∵FM∥AC,∴FMAC=DMAD且FMAE=BMAB∵AD=2DB,AE=3EC,∴AD=23AB,AE=34AC.由此可得AM=13AB同理可得AN=12AC∵四边形AMFN是平行四边形∴由向量加法法则,得AF=13AB+12AC∵AF=xAB+yAC,∴根据平面向量基本定理,可得x=13,y=12故选:A27.一个箱中原来装有大小相同的
5
个球,其中
3
个红球,2
个白球.规定:进行一次操
作是指“从箱中随机取出一个球,如果取出的是红球,则把它放回箱中;如果取出的是白
球,则该球不放回,并另补一个红球放到箱中.”
(1)求进行第二次操作后,箱中红球个数为
4
的概率;
(2)求进行第二次操作后,箱中红球个数的分布列和数学期望.答案:(1)设A1表示事件“第一次操作从箱中取出的是红球”,B1表示事件“第一次操作从箱中取出的是白球”,A2表示事件“第二次操作从箱中取出的是红球”,B2表示事件“第二次操作从箱中取出的是白球”.则A1B2表示事件“第一次操作从箱中取出的是红球,第二次操作从箱中取出的是白球”.由条件概率计算公式得P(A1B2)=P(A1)P(B2|A1)=35×25=625.B1A2表示事件“第一次操作从箱中取出的是白球,第二次操作从箱中取出的是红球”.由条件概率计算公式得P(B1A2)=P(B1)P(A2|B1)=25×45=825.A1B2+B1A2表示“进行第二次操作后,箱中红球个数为
4”,又A1B2与B1A2是互斥事件.∴P(A1B2+B1A2)=P(A1B2)+P(B1A2)=625+825=1425.(2)设进行第二次操作后,箱中红球个数为X,则X=3,4,5.P(X=3)35×35=925,P(X=4)=1425,P(X=5)=25×15=225.进行第二次操作后,箱中红球个数X的分布列为:进行第二次操作后,箱中红球个数X的数学期望EX=3×925+4×1425+5×225=9325.28.点O是△ABC内一点,若+=-,则是S△AOB:S△AOC=()
A.1
B.
C.
D.答案:A29.一个样本a,99,b,101,c中五个数恰成等差数列,则这个样本的极差与标准差分别为(
)。答案:4;30.下列函数中,与函数y=1x有相同定义域的是()A.f(x)=lnxB.f(x)=1xC.f(x)=x3D.f(x)=ex答案:∵函数y=1x,∴x>0,A、∵f(x)=lnx,∴x>0,故A正确;B、∵f(x)=1x,∴x≠0,故B错误;C、f(x)=x3,其定义域为R,故C错误;D、f(x)=ex,其定义域为R,故D错误;故选A.31.如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽为______米.答案:如图建立直角坐标系,设抛物线方程为x2=my,将A(2,-2)代入x2=my,得m=-2∴x2=-2y,代入B(x0,-3)得x0=6,故水面宽为26m.故为:26.32.设O是正方形ABCD的中心,向量,,,是(
)
A.平行向量
B.有相同终点的向量
C.相等向量
D.模相等的向量答案:D33.已知||=2,||=,∠AOB=150°,点C在∠AOB内,且∠AOC=30°,设(m,n∈R),则=()
A.
B.
C.
D.答案:B34.若图中的直线l1、l2、l3的斜率分别为k1、k2、k3,则()
A.k1<k2<k3
B.k2<k1<k3
C.k3<k2<k1
D.k1<k3<k2
答案:B35.在Rt△ABC中,若∠C=90°,AC=b,BC=a,则△ABC外接圆半径r=a2+b22.运用类比方法,若三棱锥的三条侧棱两两互相垂直且长度分别为a,b,c,则其外接球的半径R=______.答案:直角三角形外接圆半径为斜边长的一半,由类比推理可知若三棱锥的三条侧棱两两互相垂直且长度分别为a,b,c,将三棱锥补成一个长方体,其外接球的半径R为长方体对角线长的一半.故为a2+b2+c22故为:a2+b2+c2236.现有一个关于平面图形的命题:如图,同一个平面内有两个边长都是a的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为a24.类比到空间,有两个棱长均为a的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为______.答案:∵同一个平面内有两个边长都是a的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为a24,类比到空间有两个棱长均为a的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为a38,故为a38.37.根据给出的空间几何体的三视图,用斜二侧画法画出它的直观图.答案:画法:(1)画轴如下图,画x轴、y轴、z轴,三轴相交于点O,使∠xOy=45°,∠xOz=90°.(2)画圆台的两底面画出底面⊙O假设交x轴于A、B两点,在z轴上截取O′,使OO′等于三视图中相应高度,过O′作Ox的平行线O′x′,Oy的平行线O′y′利用O′x′与O′y′画出底面⊙O′,设⊙O′交x′轴于A′、B′两点.(3)成图连接A′A、B′B,去掉辅助线,将被遮挡的部分要改为虚线,即得到给出三视图所表示的直观图.38.在平面直角坐标系中,双曲线Γ的中心在原点,它的一个焦点坐标为(5,0),e1=(2,1)、e2=(2,-1)分别是两条渐近线的方向向量.任取双曲线Γ上的点P,若OP=ae1+be2(a、b∈R),则a、b满足的一个等式是______.答案:因为e1=(2,1)、e2=(2,-1)是渐进线方向向量,所以双曲线渐近线方程为y=±12x,又c=5,∴a=2,b=1双曲线方程为x24-y2=1,OP=ae1+be2=(2a+2b,a-b),∴(2a+2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年低利率借款合同范本大全
- 2024年代理贴牌代加工合同范本
- 2024年冲床来料加工厂合同范本
- 山东省多校2024-2025学年高二上学期期中联考英语试题(含解析无听力音频有听力原文)
- 传染病病禽的治疗和扑杀
- 违规募捐行为分类及法律问题分析报告 2024年11月修订
- 基础护理疼痛护理
- 中医科鼻炎治疗方案
- 三基基础护理基础知识
- 医疗文件的书写要求
- 人教部编版六年级道德与法治上册第6课《人大代表为人民》精美课件
- 第五单元测试卷(单元测试)2024-2025学年统编版语文四年级上册
- 《金融科技概论(第二版)》高职全套教学课件
- (2024年)传染病培训课件
- 题目 高中数学复习专题讲座数形结合思想
- 交叉作业安全管理规定
- 压裂工程技术及安全环保措施
- 125碘粒子知情同意书
- 英语人称代词-物主代词-名词所有格(共4页)
- 幕墙工程量自动计算结果表格
- 海湾控制器CAN总线联网调试说明(共26页)
评论
0/150
提交评论