山西省忻州市育才中学2021-2022学年高一数学文上学期期末试题含解析_第1页
山西省忻州市育才中学2021-2022学年高一数学文上学期期末试题含解析_第2页
山西省忻州市育才中学2021-2022学年高一数学文上学期期末试题含解析_第3页
山西省忻州市育才中学2021-2022学年高一数学文上学期期末试题含解析_第4页
山西省忻州市育才中学2021-2022学年高一数学文上学期期末试题含解析_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省忻州市育才中学2021-2022学年高一数学文上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.当x=时,函数f(x)=Asin(x+φ)(A>0)取得最小值,则函数y=f(﹣x)是()A.奇函数且图象关于直线x=对称B.偶函数且图象关于点(π,0)对称C.奇函数且图象关于(,0)对称D.偶函数且图象关于点(,0)对称参考答案:A【考点】HJ:函数y=Asin(ωx+φ)的图象变换;H2:正弦函数的图象.【分析】由题意可得sin(+φ)=﹣1,解得φ=2kπ﹣,k∈Z,从而可求y=f(﹣x)=﹣Asinx,利用正弦函数的图象和性质即可得解.【解答】解:由x=时函数f(x)=Asin(x+φ)(A>0)取得最小值,∴﹣A=Asin(+φ),可得:sin(+φ)=﹣1,∴+φ=2kπ﹣,k∈Z,解得:φ=2kπ﹣,k∈Z,∴f(x)=Asin(x﹣),∴y=f(﹣x)=Asin(﹣x﹣)=﹣Asinx,∴函数是奇函数,排除B,D,∵由x=时,可得sin取得最大值1,故C错误,图象关于直线x=对称,A正确;故选:A.【点评】本题主要考查了正弦函数的图象和性质,考查了数形结合能力,属于基础题.2.已知某一几何体的主视图与左视图如图所示,则在下列图形中,可以是该几何体的俯视图的图形为()A.①②③⑤

B.②③④⑤ C.①②④⑤

D.①②③④参考答案:D略3.的值为

)A.

B.

C.

D.参考答案:A略4.如图1,在一个边长为a、b(a>b>0)的矩形内画一梯形,梯形上、下底分别为a与a,高为b.向该矩形内随机投一点,则所投的点落在梯形内部的概率为A.

B.C.

D.

图1参考答案:D5.方程组的解集是(

)A.

B.

C.

D.。参考答案:D略6.已知菱形ABCD边长为2,∠B=,点P满足=λ,λ∈R,若?=﹣3,则λ的值为()A. B.﹣ C. D.﹣参考答案:A【考点】9R:平面向量数量积的运算.【分析】根据向量的基本定理,结合数量积的运算公式,建立方程即可得到结论.【解答】解:由题意可得=2×2×cos60°=2,?=(+)?(﹣)=(+)?[(﹣)﹣]=(+)?[(λ﹣1)?﹣]=(1﹣λ)﹣+(1﹣λ)?﹣=(1﹣λ)?4﹣2+2(1﹣λ)﹣4=﹣6λ=﹣3,∴λ=,故选:A.7.如图在长方体中,,分别过BC、的两个平行截面将长方体分成三部分,其体积分别记为,若,则截面的面积为(

)A.

B.

C.

D.参考答案:C略8.下图是某赛季甲、乙两名篮球运动员参加的每场比赛得分的茎叶图,由甲、乙两人这几场比赛得分的中位数之和是()

A.

65

B.64

C.63

D.62参考答案:C略9.已知函数f(x)是定义在R上的奇函数,且在(0,+∞)上单调递增,若f(﹣1)=0,则不等式f(2x﹣1)>0解集为()A. B. C.(0,1) D.参考答案:A【考点】奇偶性与单调性的综合.【分析】根据函数的奇偶性、单调性可作出函数的草图及函数所的零点,根据图象可对不等式等价转化为具体不等式,解出即可.【解答】解:因为f(x)在(0,+∞)上单调递增且为奇函数,所以f(x)在(﹣∞,0)上也单调递增,f(﹣1)=﹣f(1)=0,作出草图如下所示:由图象知,f(2x﹣1)>0等价于﹣1<2x﹣1<0或2x﹣1>1,解得0<x<或x>1,所以不等式的解集为(0,)∪(1,+∞),故选A.10.设向量,的模分别为2和3,且夹角为60°,则|+|等于()A. B.13 C. D.19参考答案:C【考点】平面向量数量积的运算.【分析】利用两个向量的数量积的定义求出,再利用|+|2=||2+||2+2,即可求出答案.【解答】解:∵向量,的模分别为2和3,且夹角为60°,∴=||?||cos60°=2×3×=3,∴|+|2=||2+||2+2=4+9+2×3=19,∴|+|=,故选:C.【点评】本题考查两个向量的数量积的定义,向量的模的定义,求向量的模的方法.二、填空题:本大题共7小题,每小题4分,共28分11.已知全集,集合为函数的定义域,则=

。参考答案:12.函数f(x)=在x∈[﹣t,t]上的最大值与最小值之和为.参考答案:2【考点】基本不等式在最值问题中的应用.【专题】函数的性质及应用.【分析】函数f(x)化简为1+,由g(x)=在x∈[﹣t,t]上为奇函数,设g(x)的最小值为m,最大值为n,由对称性,可得m+n=0,进而得到所求最值的和.【解答】解:函数f(x)==1+,由g(x)=在x∈[﹣t,t]上为奇函数,设g(x)的最小值为m,最大值为n,即有m+n=0,则f(x)的最小值为m+1,最大值为n+1,则m+1+n+1=2.故答案为:2.【点评】本题考查函数的奇偶性的判断和运用,考查函数的最值的求法,属于中档题.13.数列满足(),则等于

.参考答案:略14.在我国古代数学著作《孙子算经》中,卷下第二十六题是:今有物,不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?满足题意的答案可以用数列表示,该数列的通项公式可以表示为an=

参考答案:15.、直线与平行,则实数的值______参考答案:或16.A=求实数a的取值范围。参考答案:略17.设,且,则n=

.参考答案:10

三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知.参考答案:解:,,.……………………4分又,只可能为第二象限角或第四象限角.

……6分(1)当为第二象限角时,.(2)当为第四象限角时,.…12分

略19.已知非空集合A={x|2a+1≤x≤3a﹣5},B={x|3≤x≤22},(1)当a=10时,求A∩B,A∪B;(2)求能使A?B成立的a的取值范围.参考答案:【考点】集合的包含关系判断及应用.【分析】(Ⅰ)当a=10时,A={21≤x≤25},B={x|3≤x≤22},由此能求出A∩B和A∪B.(Ⅱ)由A={x|2a+1≤x≤3a﹣5},B={x|3≤x≤22},且A?B,知,由此能求出a的取值范围.【解答】解:(Ⅰ)当a=10时,A={21≤x≤25},B={x|3≤x≤22},∴A∩B={x|21≤x≤22},A∪B={x|3≤x≤25}.(Ⅱ)∵A={x|2a+1≤x≤3a﹣5},B={x|3≤x≤22},且A?B,∴,解得6≤a≤9.∴a的取值范围是[6,9]20.(本小题满分12分)已知函数(1)作出函数的图像,并求函数的单调区间;参考答案:(1)由图可知,增区间为:,减区间为:(2)由图可知,,又,21.已知三个实数成等比数列,三个实数的积为103,在这三个数中,如果最小的数除以2,最大的数减去7,所得三个数依次成等差数列,求等比数列中的三个实数及等差数列的公差.(本小题满分15)参考答案:设成等比数列的三个数为,a,aq,由·a·aq=103,解得a=10,即等比数列,10,10q.

…………2分(1)当q>1时,依题意,+(10q-7)=20.解得q1=(舍去),q2=.…5分此时等比数列中的三个数分别为4,10,25,………7分因此成等差数列的三个数为2,10,18,公差d=8.………………8分(2)当0<q<1,依题意,(-7)+5q=20,解得q1=5(舍去),q2=,……11分此时等比数列中的三个数分别为25,10,4,……………………13分因此成等差数列的三个数为18、10、2,公差为-8.…………14分综上所述,d=±8.…………………15分22.如图,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,且△ABC为正三角形,AA1=AB=6,D为AC的中点.(1)求证:直线AB1∥平面BC1D;(2)求三棱锥C-BC1D的体积.(3)三棱柱ABC-A1B1C1的顶点都在一个球面上,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论