版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、傅里叶积分是分析连续信号的理论基础。最简单的连续信号是单位脉冲信号(Impluse),它的表示式为DSP:几种基本的连续信号并且CFT的性质(6):对偶性质例1、计算单位信号
的频谱。因为单位脉冲信号
因此,是一个实对称函数:其中有任意阶导数,在一个有限区间外的取值等于零。满足上式的函数,我们称其为单位脉冲信号,或函数。δ函数函数的真正表达式是
δ函数于是,可以得到
按照傅里叶积分变换中的对偶性质,例:计算δ函数记
可以得到这是Fourier变换的又一种推导方法。连续信号的褶积将前面的公式进行推广(P45):
称其为连续信号x(t)与y(t)的线性褶积(LinearConvolution),简称褶积。表明:任何连续信号等于其与单位脉冲信号的褶积,称此性质为连续信号关于线性褶积的脉冲不变性,简称线性褶积的脉冲不变性。连续信号的褶积褶积是否具有可交换性??连续信号的褶积设则有i.e.,这表明:两个连续信号的褶积,其频谱就是两个对应信号频谱的乘积;反过来讲,两个频谱乘积,其信号就是相应的两个连续信号的褶积。
连续信号的褶积显然,可以用两种不同的方法证明:褶积运算具有可交换性!连续信号的褶积所以有连续信号的褶积(Continuous_Convolution.m)连续信号的褶积1、前面讲过的CFT的线性性质,仅仅涉及两个信号的简单加减;注意信号的乘积与褶积是完全不同的。2、褶积是Fourier分析中最最重要的性质及运算,其含义非常广泛;滤波只是一种应用,这种应用通常是借助褶积原理来实现的。连续信号的相关信号x(t)和y(t)的线性相关(LinearCorrelation,简称相关)定义为(P173:连续相关内容空缺)特别地,若信号x(t)=y(t),我们称其为自相关(Auto-Correlation),否则就是互相关(Cross-Correlation)。
通常记连续信号的相关因此有连续信号的相关设则有i.e.,这说明了信号的相关运算不具有可交换性质。
连续信号的相关(Continuous_Correlation.m)应用:能量计算公式(P50)连续信号的褶积与相关1、有关函数的计算;2、连续信号的褶积(可交换性、频谱表达式);连续信号的褶积与相关分析的重点是:公式推导!3、连续信号的相关(频谱表达式);4、能量表达式。有关褶积运算的特别申明无论是连续信号还是离散信号,褶积运算是它们最最重要的性质;其重要性远在连续信号的其它八个性质之上。时间域的褶积对应着频率域的乘积;时间域的乘积对应着频率域的褶积。这是Fourier分析方法普遍应用的理论基础;在此基础上衍生出许多快速算法。至此,我们已学完连续信号分析的所有理论。选讲:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年中国财运亨通组合烟花数据监测研究报告
- 2025至2030年中国皮革卡套数据监测研究报告
- 航空客运合作合同范本
- 2025至2030年中国安全备份和网络共享方案数据监测研究报告
- 2025至2030年中国仿古钢琴数据监测研究报告
- 2025年中国氯肼市场调查研究报告
- 2025年中国实竹地板市场调查研究报告
- 2025年中国多功能集成记录仪市场调查研究报告
- 印刷厂装修延期合同
- 2025至2031年中国冷冻袋行业投资前景及策略咨询研究报告
- 2023社会责任报告培训讲稿
- 2023核电厂常规岛及辅助配套设施建设施工技术规范 第8部分 保温及油漆
- 2025年蛇年春联带横批-蛇年对联大全新春对联集锦
- 表B. 0 .11工程款支付报审表
- 警务航空无人机考试题库及答案
- 空气自动站仪器运营维护项目操作说明以及简单故障处理
- 新生儿窒息复苏正压通气课件
- 法律顾问投标书
- 班主任培训简报4篇(一)
- 成都市数学八年级上册期末试卷含答案
- T-CHSA 020-2023 上颌骨缺损手术功能修复重建的专家共识
评论
0/150
提交评论