版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省太原市北留中学2022年高三数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.一已知数列{}中,首项a1=1,,数列{bn}的前n项和
(1)求数列{bn}的通项公式;
(2)求数列{|bn|}的前n项和.参考答案:(l);(2)
【知识点】递推公式;数列的和D1D4解析:(l)由已知,即,累加得:又。对于数列的前n项和:所以当时,(2)设数列的前n项和,则当时,,,当时,,故【思路点拨】(l)两边取对数,变形后可利用累加法;(2)对n分两种情况可得结果.2.函数的零点所在的大致区间是
A.(0,1)
B.(1,2)
C.(2,e)
D.(3,4)参考答案:B3.若集合=(
)A.
B.
C.
D.参考答案:C略4.已知某几何体的三视图如图,其中正视图中半圆半径为1,则该几何体体积为(
)
A.
B.C.
D.参考答案:A5.函数y=loga|x+b|(a>0,a≠1,ab=1)的图象只可能是
参考答案:B6.已知函数f(x)=x2sinx+xcosx,则其导函数f′(x)的图象大致是()A.B.C.D.参考答案:C【考点】利用导数研究函数的单调性.【专题】函数的性质及应用;导数的概念及应用.【分析】先求导,再根据函数的奇偶性排除A,C,再根据函数值得变化趋势得到答案.【解答】解:∵f(x)=x2sinx+xcosx,∴f′(x)=x2cosx+cosx,∴f′(﹣x)=(﹣x)2cos(﹣x)+cos(﹣x)=x2cosx+cosx=f′(x),∴其导函数f′(x)为偶函数,图象关于y轴对称,故排除A,C,当x→+∞时,f′(x)→+∞,故排除D,故选:C.【点评】本题考查了导数的运算法则和函数图象的识别,属于中档题.7.当a>0时,函数的图象大致是(
)参考答案:B略8.设函数,则 (
)A.为的极大值点 B.为的极小值点C.为的极大值点 D.为的极小值点参考答案:D略9.若实数满足,则的取值范围是(
)A. B. C. D.参考答案:D10.椭圆+=1的左焦点为F,直线x=a与椭圆相交于点M、N,当△FMN的周长最大时,△FMN的面积是()A. B. C. D.参考答案:C【考点】K4:椭圆的简单性质.【分析】设右焦点为F′,连接MF′,NF′,由于|MF′|+|NF′|≥|MN|,可得当直线x=a过右焦点时,△FMN的周长最大.c==1.把c=1代入椭圆标准方程可得:=1,解得y,即可得出此时△FMN的面积S.【解答】解:设右焦点为F′,连接MF′,NF′,∵|MF′|+|NF′|≥|MN|,∴当直线x=a过右焦点时,△FMN的周长最大.由椭圆的定义可得:△FMN的周长的最大值=4a=4.c==1.把c=1代入椭圆标准方程可得:=1,解得y=±.∴此时△FMN的面积S==.故选:C.二、填空题:本大题共7小题,每小题4分,共28分11.命题“?x∈[﹣1,1],x2﹣3x+1<0”的否定是.参考答案:?x∈[﹣1,1],x2﹣3x+1≥0考点:命题的否定.专题:简易逻辑.分析:直接利用特称命题的否定是全称命题写出结果即可.解答:解:因为特称命题的否定是全称命题,所以命题“?x∈[﹣1,1],x2﹣3x+1<0”的否定是:?x∈[﹣1,1],x2﹣3x+1≥0.故答案为:?x∈[﹣1,1],x2﹣3x+1≥0.点评:本题考查命题的否定,特称命题与全称命题的否定关系.12.已知,,当时,,则当时,
.参考答案:由,可知函数关于对称,当时,,所以.13.下列命题中:(1)a=4,A=30°,若△ABC唯一确定,则0<b≤4.(2)若点(1,1)在圆x2+y2+mx﹣y+4=0外,则m的取值范围是(﹣5,+∞);(3)若曲线+=1表示双曲线,则k的取值范围是(1,+∞]∪(﹣∞,﹣4];(4)将函数y=cos(2x﹣)(x∈R)的图象向左平移个单位,得到函数y=cos2x的图象.(5)已知双曲线方程为x2﹣=1,则过点P(1,1)可以作一条直线l与双曲线交于A,B两点,使点P是线段AB的中点.正确的是(填序号)参考答案:(2),(5)【考点】命题的真假判断与应用.【分析】由正弦定理求得sinB,举例说明(1)错误;把点的坐标代入圆的方程说明(2)正确;由双曲线的方程可得关于k的不等式,求得k值说明(3)错误;由函数图形的平移可得(4)错误;利用点差法求出直线l的方程说明(5)正确.【解答】解:对于(1),由,得sinB=.当b=8时,sinB=1,B=90°,C=60°,△ABC唯一确定,故(1)错误;对于(2),点(1,1)在圆x2+y2+mx﹣y+4=0外,则12+12+m﹣1+4>0,即m>﹣5,故(2)正确;对于(3),若曲线+=1表示双曲线,则(4+k)(1﹣k)<0,解得k>1或k<﹣4,即k的取值范围是(1,+∞)∪(﹣∞,﹣4),故(3)错误;对于(4),将函数y=cos(2x﹣)(x∈R)的图象向左平移个单位,得到函数图象的解析式为y=cos[2(x+)]=cos(2x+),故(4)错误;对于(5),设A(x1,y1),B(x2,y2),则,,两式作差得:,∴,∴kAB=2,此时直线方程为y﹣1=2(x﹣2),即y=2x﹣3,联立,得2x2﹣12x+11=0,△=144﹣88=56>0,故(5)正确.∴正确命题的序号是(2),(5).故答案为:(2),(5).14.如果函数的导函数的图像如下,给出下列判断:(1)函数在区间(-4,-1)内单调递增;
y(2)函数在区间(-1,3)内单调递减;(3)函数在区间(4,5)内单调递增;
-4
-1
2
3
4
5
x(4)当时,函数有极小值。其中正确的判断是
(把正确判断的序号都写上).
参考答案:15.在直角坐标系xOy中,已知A(-1,0),B(0,1),则满足且在圆上的点P的个数为
▲
.参考答案:2略16.若如图所示的算法流程图中输出y的值为0,则输入x的值可能是________(写出所有可能的值).参考答案:0,-3,117.已知函数,设,若,则的取值范围是____________.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)如图,在四棱锥P-ABCD中,已知AB⊥AD,PA=PD,D为AD的中点,AB⊥PO,E为线段DC上一点,向量(I)求证:平面PAD⊥平面PCD;(Ⅱ)若PO=,AD=AB=2,点C到平面PBE的距离为,求平面PAD与平面PBC所成二面角的余弦值,参考答案:19.(12分)如图,直线l:y=x+b与抛物线C:x2=4y相切于点A.(Ⅰ)求实数b的值;(Ⅱ)求以点A为圆心,且与抛物线C的准线相切的圆的方程.参考答案:【考点】:圆与圆锥曲线的综合.【专题】:综合题.【分析】:(I)由,得:x2﹣4x﹣4b=0,由直线l与抛物线C相切,知△=(﹣4)2﹣4×(﹣4b)=0,由此能求出实数b的值.(II)由b=﹣1,得x2﹣4x+4=0,解得x=2,代入抛物线方程x2=4y,得点A的坐标为(2,1),因为圆A与抛物线C的准线相切,所以圆A的半径r等于圆心A到抛物线的准线y=﹣1的距离,由此能求出圆A的方程.解:(I)由,消去y得:x2﹣4x﹣4b=0①,因为直线l与抛物线C相切,所以△=(﹣4)2﹣4×(﹣4b)=0,解得b=﹣1;(II)由(I)可知b=﹣1,把b=﹣1代入①得:x2﹣4x+4=0,解得x=2,代入抛物线方程x2=4y,得y=1,故点A的坐标为(2,1),因为圆A与抛物线C的准线相切,所以圆A的半径r等于圆心A到抛物线的准线y=﹣1的距离,即r=|1﹣(﹣1)|=2,所以圆A的方程为:(x﹣2)2+(y﹣1)2=4.【点评】:本题考查圆锥曲线的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用.20..已知函数f(x)=xex﹣a(lnx+x).(1)若函数f(x)恒有两个零点,求a的取值范围;(2)若对任意x>0,恒有不等式f(x)≥1成立.①求实数a的值;②证明:x2ex>(x+2)lnx+2sinx.参考答案:【考点】6K:导数在最大值、最小值问题中的应用;3R:函数恒成立问题;R6:不等式的证明.【分析】(1)利用导数的运算法则可得f′(x),对a分类讨论,当a≤0时,f'(x)>0,故f(x)单调递增,舍去.当a>0时,f'(x)=0有唯一解x=x0,此时,求出极值,进而得出答案.(2)①当a≤0时,不符合题意.当a>0时,由(1)可知,f(x)min=a﹣alna,故只需a﹣alna≥1.令,上式即转化为lnt≥t﹣1,利用导数研究其单调性极值即可得出.②由①可知x2ex﹣xlnx≥x2+x,因而只需证明:?x>0,恒有x2+x>2lnx+2sinx.注意到前面已经证明:x﹣1≥lnx,因此只需证明:x2﹣x+2>2sinx.对x分类讨论,利用导数研究函数的单调性极值即可得出.【解答】解:(1)f(x)=xex﹣alnx﹣ax,x>0,则.当a≤0时,f'(x)>0,故f(x)单调递增,故不可能存在两个零点,不符合题意;当a>0时,f'(x)=0有唯一解x=x0,此时,则.注意到,因此.(2)①当a<0时,f(x)单调递增,f(x)的值域为R,不符合题意;当a=0时,则,也不符合题意.当a>0时,由(1)可知,f(x)min=a﹣alna,故只需a﹣alna≥1.令,上式即转化为lnt≥t﹣1,设h(t)=lnt﹣t+1,则,因此h(t)在(0,1)上单调递增,在(1,+∞)上单调递减,从而h(x)max=h(1)=0,所以lnt≤t﹣1.因此,lnt=t﹣1?t=1,从而有.故满足条件的实数为a=1.②证明:由①可知x2ex﹣xlnx≥x2+x,因而只需证明:?x>0,恒有x2+x>2lnx+2sinx.注意到前面已经证明:x﹣1≥lnx,因此只需证明:x2﹣x+2>2sinx.当x>1时,恒有2sinx≤2<x2﹣x+2,且等号不能同时成立;当0<x≤1时,设g(x)=x2﹣x+2﹣2sinx,则g'(x)=2x﹣1﹣2cosx,当x∈(0,1]时,g'(x)是单调递增函数,且,因而x∈(0,1]时恒有g'(x)<0;从而x∈(0,1]时,g(x)单调递减,从而g(x)≥g(1)=2﹣2sin1>0,即x2﹣x+2>2sinx.故x2ex>(x+2)lnx+2sinx.21.(本题满分15分)对于任意的n∈N*,数列{an}满足.(Ⅰ)求数列{an}的通项公式;(Ⅱ)求证:对于n≥2,参考答案:(I)解:由.①当时得.②……………2分①-②得.……………4分∴.………………5分又.…………6分综上得.……………………7分(II)证明:当时,.………10分………11分.…………13分∴当时,.………………15分22.(本题12分)已知函数。(1)当时,求的极值;(2)设,若对于任意的,不等式恒成立,求实数的取值范围。参考答案:【知识点】利用导数研究函数的极值;导数在最大值、最小值问题中的应用.B12【答案解析】(1)当时,有极大值,且极大值=;当时,有极小值,且极小值=。(2)。解析:(1)当时,有极大值,且极大值=;当时,有极小值,且极小值=。
(2)其在上递减,在上递增,所以对于任意的,不等式恒成立,则有即可。即不等式对于任意的恒成立。①当时,,由得;由得,所以在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度版权许可使用合同with版权内容、使用范围等详细条款
- 2024年度新能源车辆采购合同:公共交通公司新能源汽车采购2篇
- 2024年度联合营销与推广合同
- 2024年度电梯设备维护及安装合同
- 2024年度盘锦公司技术开发合同
- 2024年度海上旅游业务合同
- 2024年度茶楼租赁期内茶叶供应与质量控制合同
- 2024年度企业环保治理与污染减排合同
- 2024年度土地使用权转让合同标的及服务内容详细描述
- 2024年度井筒建设贷款合同:水资源开发资金借贷
- 【内容完整】古典卡通风成语故事课件PPT模板
- 祖国的灿烂文化PPT通用课件
- 浙江大华可视对讲系统介绍
- 松下smt贴片机离线编程软件pt200中文进修手册
- 收货确认回执单.docx
- 设备及管道拆除施工方案完整
- 机电一体化大专毕业论文完整版
- 校本教研特色汇报
- 项目管理组织机构框图及说明
- 饱和蒸汽温度密度压力对照表
- 协调部管理办法
评论
0/150
提交评论