版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年山东省烟台市第四中学高二数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在△abc中,a=2,∠a=30°,∠c=45°,则s△abc=().a.
b.
c.
d.参考答案:C由得,∠B=105°,S△ABC=acsinB=.2.定义,其中是△内一点,、、分别是△、△、△的面积,已知△中,,,,则的最小值是
(
)A.8
B.9
C.16
D.18参考答案:B略3.函数g(x)是奇函数f(x)(x∈R)的导函数,f(1)=0,当x>0时,xg(x)﹣f(x)<0,则使得f(x)<0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1) B.(0,1)∪(1,+∞) C.(﹣∞,﹣1)∪(﹣1,0) D.(﹣1,0)∪(1,+∞)参考答案:D【考点】函数的单调性与导数的关系.【分析】构造函数F(x)=,由函数的单调性和奇偶性可得原不等式等价于或,结合图象可得.【解答】解:构造函数F(x)=,则F(x)为偶函数且x≠0,求导数可得F′(x)==,∵当x>0时,xg(x)﹣f(x)<0,∴F′(x)<0,∴函数F(x)在(0,+∞)单调递减,由函数为偶函数可得F(x)在(﹣∞,0)单调递增,由f(1)=0可得F(1)=0,∴f(x)<0等价于xF(x)<0等价于或,解得x∈(1﹣,0)∪(1,+∞)故选:D【点评】本题考查函数的单调性和导数的关系,构造函数并利用函数的性质是解决问题的关键,属中档题.4.等轴双曲线C的中心在原点,焦点在轴上,C与抛物线的准线交于A,B两点,,则C的实轴长为(
)A.2
B.
C.4
D.参考答案:D略5.已知椭圆的左右焦点分别为,P是椭圆上的一点,且成等比数列,则椭圆的离心率的取值范围为()A.
B.C.D.参考答案:D略6.设是甲抛掷一枚骰子(六个面分别标有1-6个点的正方体)得到的点数,则方程有两个不相等的实数根的概率为(
)A.
B.
C.
D.参考答案:A7.在研究打酣与患心脏病之间关系时,在收集数据、整理分析数据后得“打酣与患心脏病有关”的结论,并且有以上的把握认为这个结论是成立的。下列说法中正确的是(
)A.100个心脏病患者中至少有99人打酣B.1个人患心脏病,那么这个人有99%的概率打酣C.在100个心脏病患者中一定有打酣的人D.在100个心脏病患者中可能一个打酣的人都没有参考答案:D略8.设函数f(0)x=sinx,定义f(1)x=f′,f(2)(x)=f′,…,f(n)(x)=f′,则f(1)(150)+f(2)(150)+f(3)(150)+…+f(2017)(150)的值是()A. B. C.0 D.1参考答案:A【考点】63:导数的运算.【分析】求函数的导数,得到函数导数具备周期性,结合三角函数的运算公式进行求解即可.【解答】解:f(0)x=sinx,则f(1)x=cosx,f(2)(x)=﹣sinx,f(3)(x)=﹣cosx,f(5)x=sinx,则f(5)x=f(1)(x),即f(n+4)(x)=f(n)(x),则f(n)(x)是周期为4的周期函数,则f(1)(x)+f(2)(x)+f(3)(x)+f(4)(x)=sinx+cosx﹣sinx﹣cosx=0,则f(1)(150)+f(2)(150)+f(3)(150)+…+f(2017)(150)=f(1)(150)(150)=cos15°=cos(450﹣300)=cos45°cos30°+sin45°sin30°=×+×=,故选:A.【点评】本题主要考查函数的导数的计算,根据条件得到函数的导数具备周期性是解决本题的关键.9.要排出某班一天中语文、数学、政治、英语、体育、艺术6堂课的课程表,要求数学课排在上午(前4节),体育课排在下午(后2节),不同排法种数为()A.144 B.192 C.360 D.720参考答案:B【考点】D9:排列、组合及简单计数问题.【分析】先排数学、体育,再排其余4节,利用乘法原理,即可得到结论.【解答】解:由题意,要求数学课排在上午(前4节),体育课排在下午(后2节),有=8种再排其余4节,有=24种,根据乘法原理,共有8×24=192种方法,故选B.10.一个包内装有4本不同的科技书,另一个包内装有5本不同的科技书,从两个包内任取一本的取法有()种.A.15B.4C.9D.20参考答案:C【考点】计数原理的应用.【分析】由分步计数原理和组合数公式可得.【解答】解:从装有4本不同的科技书的书包内任取一本有4种方法,从装有5本不同的科技书的书包内任取一本有5种方法,由分步计数原理可得从两个书包中各取一本书的取法共有4+5=9种,故选:C.二、填空题:本大题共7小题,每小题4分,共28分11.设,则的值是
(A)0
(B)
(C)1
(D)2参考答案:C略12.函数在处的切线方程为
.参考答案:13.动圆M过点(3,2)且与直线y=1相切,则动圆圆心M的轨迹方程为.参考答案:x2﹣6x﹣2y+12=0【考点】轨迹方程.【分析】设出圆的坐标,利用已知条件列出方程求解即可.【解答】解:设动圆圆心M(x,y),动圆M过点(3,2)且与直线y=1相切,可得:,化简可得x2﹣6x﹣2y+12=0.则动圆圆心M的轨迹方程为:x2﹣6x﹣2y+12=0.故答案为:x2﹣6x﹣2y+12=0.14.设变量x,y满足约束条件,则z=x﹣3y的最小值是
.参考答案:﹣8【考点】简单线性规划.【专题】不等式的解法及应用.【分析】将z=x﹣3y变形为,此式可看作是斜率为,纵截距为的一系列平行直线,当最大时,z最小.作出原不等式组表示的平面区域,让直线向此平面区域平移,可探求纵截距的最大值.【解答】解:由z=x﹣3y,得,此式可看作是斜率为,纵截距为的直线,当最大时,z最小.画出直线y=x,x+2y=2,x=﹣2,从而可标出不等式组表示的平面区域,如右图所示.由图知,当动直线经过点P时,z最小,此时由,得P(﹣2,2),从而zmin=﹣2﹣3×2=﹣8,即z=x﹣3y的最小值是﹣8.故答案为:﹣8.【点评】本题考查了线性规划的应用,为高考常考的题型,求解此类问题的一般步骤是:(1)作出已知不等式组表示的平面区域;(2)运用化归思想及数形结合思想,将目标函数的最值问题转化为平面中几何量的最值问题处理.15.已知,函数的单调减区间为
.参考答案:.
16.一个几何体的三视图如图所示,则该几何体的表面积为______________。参考答案:38略17.用这四个数字能组成
个没有重复数字的四位数参考答案:18三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知椭圆C:的左、右焦点分别为F1,F2,离心率为,点P是椭圆C上的一个动点,且面积的最大值为.(1)求椭圆C的方程;(2)设斜率不为零的直线PF2与椭圆C的另一个交点为Q,且PQ的垂直平分线交y轴于点,求直线PQ的斜率.参考答案:(1)(2)或【分析】(1)由题得到关于a,b,c的方程,解方程组即得椭圆的标准方程;(2)设直线的方程为,线段的中点为,根据,得,解方程即得直线PQ的斜率.【详解】(1)因为椭圆离心率为,当P为C的短轴顶点时,的面积有最大值.所以,所以,故椭圆C的方程为:.(2)设直线的方程为,当时,代入,得:.设,线段的中点为,,即因为,则,所以,化简得,解得或,即直线的斜率为或.【点睛】本题主要考查椭圆标准方程的求法,考查直线和椭圆的位置关系,意在考查学生对这些知识的理解掌握水平和分析推理能力.19.如图,棱长为a的正方形ABCD中,点E,F分别是边AB,BC上的点,且将沿DE,DF折起,使得A,C两点重合于P,设EF与BD交于M点,过点P作于O点.(1)求证:;(2)求直线MD与平面PDF所成角的正弦值.参考答案:(1)见证明(2)【分析】(1)由平面可得,结合可得平面,故,又得出平面;(2)建立空间坐标系,求出各点坐标,计算平面的法向量,则为直线与平面所成角的正弦值.【详解】(1)证明:在正方形中,,,∴,在的垂直平分线上,∴,∵,,,∴平面∴,又,,∴平面,∴,又,,∴底面.(2)解:如图过点O作与平行直线为轴,为轴,为轴,建立空间直角坐标系,,,,,,∴,,,设平面的法向量,则,即,取,记直线与平面所成角为,则,故直线与平面PDF所成角的正弦值为.【点睛】本题考查了线面垂直的判定与证明,以及空间角的求解问题,意在考查学生的空间想象能力和逻辑推理能力,解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.20.(12分)设、分别是椭圆()的左、右焦点,过的直线与相交于、两点,且、、成等差数列。(1)求;(2)若直线的斜率为1,求的值。参考答案:(1)由椭圆的定义知又∴。(2)设椭圆左焦点,则的方程为,其中设,,由,消化简得:,∵,∴,两边平方得:,即,解得。21.“大众创业,万众创新”是李克强总理在本届政府工作报告中向全国人民发出的口号.某生产企业积极响应号召,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格试销,得到一组销售数据,如下表所示:
试销单价x(元)456789产品销量y(件)q8483807568
(已知,).(1)求出的值;(2)已知变量具有线性相关关系,求产品销量(件)关于试销单价(元)的线性回归方程;(3)用表示用正确的线性回归方程得到的与对应的产品销量的估计值.当销售数据的残差的绝对值时,则将销售数据称为一个“好数据”.现从6个数据中任取2个,求抽取的2个数据中至少有1个是“好数据”的概率.参考答案:(1);(2);(3).
解析:(1),可求得.(2),,所以所求的线性回归方程为.(3)当时,;当时,;当时,;当时,;当时,;当时,.与销售数据对比可知满足(1,2,…,6)的共有3个“好数据”:、、.从6个销售数据中任意抽取2个的所有可能结果有(4,90)(5,84),(4,90)(6,83),(4,90)(7,80),(4,90)(8,75),(4,90)(9,68),(5,84)(6,83),(5,84)(7,80),(5,84)(8,75),(5,84)(9,68),(6,83)(7,80),(6,83)(8,75),(6,83)(9,68),(7,80)(8,75),(7,80)(9,68),(8,75)(9,68)共15种,其中2个数据中至少有一个是“好数据”的结果有(4,90)(5,84),(4,90)(6,83),(4,90)(7,80),(4,90)(8,75),(4,90)(9,68),(5,84)(6,83),(5,84)(8,75),(6,83)(7,80),(6,83)(8,75),(6,83)(9,68),(7,80)(8,75),(8,75)(9,68)共12种,于是从抽得2个数据中至少有一个销售数据中的产品销量不超过80的概率为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 品牌公司合同范本
- 2024至2030年中国46-二羟基-2-甲基嘧啶行业投资前景及策略咨询研究报告
- 2024至2030年中国门式起重机行业投资前景及策略咨询研究报告
- 2024至2030年中国矿岩棉制品数据监测研究报告
- 2024至2030年中国斜滑动轴承座行业投资前景及策略咨询研究报告
- 2024至2030年聚丙烯滤膜项目投资价值分析报告
- 2024至2030年中国平面热压机数据监测研究报告
- 2024至2030年浮雕奖牌项目投资价值分析报告
- 房地产开发商变更合同范本
- 2024年防水剃须刀项目可行性研究报告
- 华科版五年级全册信息技术教案(共24课时)
- 设备供货安装方案(通用版)
- 计算机基础全套完整版ppt教学教程最新最全
- 三年级数学上册课件-8.1.1 认识几分之一 人教版(共20张PPT)
- 英语学习重要性
- 《应用写作》精品课程教案
- 水墨中国风古风山水典雅通用PPT模板
- 语文四年级上册第五单元习作: 生活万花筒课件(PPT18页)
- T∕CAIAS 001-2021 褐藻提取物 岩藻黄素
- 第六章轴心受压构件
- 企业财务风险预警管理办法
评论
0/150
提交评论