版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年北京周口店镇长沟峪中学高一数学文下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知集合,集合,若命题“”是命题“”的充分不必要条件,则实数的取值范围是(
)A.
B.
C.
D.参考答案:A2.已知,则下列关系正确的是(
)A.
B.
C.
D.参考答案:A3.(5分)三个平面两两垂直,它们的三条交线交于点O,空间一点P到三个平面的距离分别为3、4、5,则OP长为() A. 5 B. 2 C. 3 D. 5参考答案:D考点: 平面与平面垂直的性质.专题: 计算题;空间位置关系与距离.分析: 构造棱长分别为a,b,c的长方体,P到三个平面的距离即为长方体的共顶点的三条棱的长,OP为长方体的对角线,求出OP即可.解答: 构造棱长分别为a,b,c的长方体,P到三个平面的距离即为长方体的共顶点的三条棱的长,则a2+b2+c2=32+42+52=50因为OP为长方体的对角线.所以OP=5.故选:D.点评: 本题考查点、线、面间的距离计算,考查计算能力,是基础题.4.设,,,,上述函数中,周期函数的个数是
(A)
1
(B)
2
(C)
3
(D)
4参考答案:B
解析:是以任何正实数为周期的周期函数;不是周期函数。因为是以为周期的周期函数,是以为周期的周期函数,而与之比不是有理数,故不是周期函数。不是周期函数。因为是以为周期的周期函数,是以为周期的周期函数,而,故是周期函数。不是周期函数。因此共有2个周期函数。5.(文科做)已知,,则的取值范围为A.
B.
C.
D.参考答案:略6.已知i是虚数单位,,,则等于(
)A.-1 B.1 C.3 D.4参考答案:A【分析】根据复数的除法化简,再根据复数相等的充要条件求出,即得答案.【详解】,.故选:.【点睛】本题考查复数的除法运算和复数相等的充要条件,属于基础题.7.在等差数列中,,,为数列的前项的和,则使的的最小值为()A、10
B、11
C、20
D、21参考答案:C8.如图所示是函数y=Asin(ωx+φ)+2的图象的一部分,它的振幅、周期、初相分别是()A.A=3,T=,φ=-
B.A=1,T=π,φ=-πC.A=1,T=π,φ=-π
D.A=1,T=π,φ=-参考答案:B略9.全集U={0,1,3,5,6,8},集合A={1,5,8},
B={2},则集合为A.{0,2,3,6}
B.{0,3,6}
C.{1,2,5,8}
D.参考答案:A10.已知函数f(x)是奇函数,当x>0时,f(x)=log2(x+1),则f(﹣3)=()A.2 B.﹣2 C.1 D.﹣1参考答案:B【考点】函数奇偶性的性质.【分析】根据函数奇偶性的性质进行转化求解即可.【解答】解:∵函数f(x)是奇函数,当x>0时,f(x)=log2(x+1),∴f(﹣3)=﹣f(3)=﹣log2(3+1)=﹣log24=﹣2,故选:B二、填空题:本大题共7小题,每小题4分,共28分11.对于正项数列{an},定义为{an}的“光”值,现知某数列的“光”值为,则数列{an}的通项公式为
.参考答案:12.设函数.若为奇函数,则曲线在点(0,0)处的切线方程为___________.参考答案:【分析】首先根据奇函数的定义,得到,即,从而确定出函数的解析式,之后对函数求导,结合导数的几何意义,求得对应切线的斜率,应用点斜式写出直线的方程,最后整理成一般式,得到结果.【详解】因为函数是奇函数,所以,从而得到,即,所以,所以,所以切点坐标,因为,所以,所以曲线在点处的切线方程为,故答案是.【点睛】该题考查的是有关函数图象在某点处的切线问题,涉及到的知识点有奇函数的定义,导数的几何意义,属于简单题目.13.过点的直线的方程为
参考答案:14.比较大小:
(在空格处填上“”或“”号).参考答案:15.已知幂函数的图象关于y轴对称,且在(0,+∞)上是减函数,则m=_____________________.参考答案:1因为f(x)为幂函数且关于轴对称,且在上是减函数,所以,所以m=0,1,2经检验可知m=1时,符合题目要求,所以m=1.
16.已知是关于的方程的两个实根,且,则的值为____________参考答案:略17.已知,则________.参考答案:-6【分析】利用向量内积的坐标运算以及向量模的坐标表示,准确运算,即可求解.【详解】由题意,向量,则,,所以.故答案为:-6【点睛】本题主要考查了向量内积的坐标运算,以及向量模的坐标运算的应用,其中解答中熟记向量的数量积的运算公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)已知集合,.
(1)求集合A;
(2)若,求实数m的取值范围.参考答案:综上所述
................12分略19.设函数f(x)=sin(2ωx+)(其中ω>0),且f(x)的图象在y轴右侧的第一个最高点的横坐标是.(1)求y=f(x)的最小正周期及对称轴;(2)若x∈,函数﹣af(x)+1的最小值为0.求a的值.参考答案:【考点】正弦函数的图象;三角函数的周期性及其求法.【分析】(1)由题意,根据五点法作图求出ω的值,即可求函数y=f(x)的最小正周期;写出函数y=f(x)的解析式,即可求出它的对称轴;(2)求出函数f(x)在区间[﹣,]上的取值范围,再化简函数g(x),讨论a的取值,求出函数g(x)取最小值0时a的值.【解答】解:(1)由题意,根据五点法作图可得2ω?+=,求得ω=;所以函数y=f(x)=sin(x+)的最小正周期是T=2π;令x+=+kπ,k∈Z,解得x=+kπ,k∈Z,所以函数y=f(x)的对称轴是x=+kπ,k∈Z;(2)由(1)可得函数f(x)=sin(x+),在区间[﹣,]上,x+∈[0,],所以f(x)=sin(x+)∈[﹣,1];所以g(x)=sin2[(x+)+]﹣asin(x+)+1=1﹣sin2(x+)﹣asin(x+)+1=﹣+2+;当﹣≤﹣≤1时,﹣2≤a≤1,函数g(x)的最小值是g(x)min=2+=0,无解;当﹣<﹣时,a>1,函数g(x)的最小值是g(x)min=2﹣﹣a=0,解得a=;当﹣>1时,a<﹣2,函数g(x)的最小值是g(x)min=2﹣1﹣a=0,解得a=1(不合题意,舍去);综上,函数g(x)取得最小值0时,a=.20.(本小题满分14分)在ABC中,.(1)证明:B=C;(2)若=,求sin的值.参考答案:(1)证明:在△ABC中,由正弦定理及已知得=.…………2分于是sinBcosC-cosBsinC=0,即sin(B-C)=0.
…4分因为,从而B-C=0.所以B=C.
…6分(2)由A+B+C=和(Ⅰ)得A=-2B,故cos2B=-cos(-2B)=-cosA=.又0<2B<,于是sin2B==.
…9分从而sin4B=2sin2Bcos2B=,cos4B=.…12分所以.…14分略21.(12分)已知圆,设点是直线上的两点,它们的横坐标分别是,点在线段上,过点作圆的切线,切点为.(1)若,求直线的方程;(2)经过三点的圆的圆心是,求线段(为坐标原点)长的最小值.参考答案:(1)设Ks5u 解得或(舍去).Ks5u 由题意知切线PA的斜率存在,设斜率为k. 所以直线PA的方程为,即 直线PA与圆M相切,,解得或 直线PA的方程是或........6分(2)设与圆M相切于点A,经过三点的圆的圆心D是线段MP的中点.的坐标是设当,即时,当,即时,当,即时,则.22.某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿场售价与上市时间的关系如图一的一条折线表示;西红柿的种植成本与上市时间的关系如图二的抛物线段表示.(1)写出图一表示的市场售价与时间的函数关系式p=f(t);写出图二表示的种植成本与时间的函数关系式Q=g(t);(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注:市场售价各种植成本的单位:元/102㎏,时间单位:天)参考答案:【考点】函数的最值及其几何意义;根据实际问题选择函数类型.【专题】应用题;压轴题;函数思想.【分析】(1)观察图一可知此函数是分段函数(0,200)和(200,300)的解析式不同,分别求出各段解析式即可;第二问观察函数图象可知此图象是二次函数的图象根据图象中点的坐标求出即可.(2)要求何时上市的西红柿纯收益最大,先用市场售价减去种植成本为纯收益得到t时刻的纯收益h(t)也是分段函数,分别求出各段函数的最大值并比较出最大即可.【解答】解:(1)由图一可得市场售价与时间的函数关系为由图二可得种植成本与时间的函数关系为.
(2)设t时刻的纯收益为h(t),则由题意得h(t)=f(t)﹣g(t),即h(t)=当0≤t≤200时,配方整理得h(t)=.所以,当t=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 古代猎户的养家日常
- 独家代理合同范本
- 2024年度城市轨道交通施工安全合同
- 代办知识产权申请协议书(04版)
- 房子赠与合同
- 二零二四年智能仓储系统研发与实施合同
- 2024年度货物买卖合同(进口)2篇
- 二零二四年度农村义务教育学校修建合同
- 二零二四年度战略合作合同的合作领域和合作方式
- 劳动合同范本(2篇)
- 安全生产事故管理台账
- 河南省重点研发与推广专项(科技攻关)项目申请书(参考模板)
- 呼吸重症医学学习班主持稿
- 酒店安全生产规范要求
- 幼儿园:幼儿园食育课程的五个实施途径
- 人教版(2019)选择性必修第二册Unit3Food and Culture Reading Cultureand Cuisine课件(13张ppt)
- 2022年婚姻法与继承法案例分析题
- 《人体内脏》教学课件
- 物流配送路线优化毕业论文
- 医院周转宿舍建设项目可行性研究报告
- 电力工程专业设计工日定额
评论
0/150
提交评论