版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年广东省汕头市潮阳和平初级中学高一数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若直线被圆截得弦长为4,则的最小值是()A.9 B.4 C. D.参考答案:A圆的标准方程为:(x+1)2+(y﹣2)2=4,它表示以(﹣1,2)为圆心、半径等于2的圆;设弦心距为d,由题意可得22+d2=4,求得d=0,可得直线经过圆心,故有﹣2a﹣2b+2=0,即a+b=1,再由a>0,b>0,可得=()(a+b)=5+≥5+2当且仅当=时取等号,∴的最小值是9.故选:A.点睛:本题主要考查基本不等式,其难点主要在于利用三角形的一边及这条边上的高表示内接正方形的边长.在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.2.已知向量,且,则(
).A. B.C. D.参考答案:D【分析】运用平面向量的加法的几何意义,结合等式,把其中的向量都转化为以为起点的向量的形式,即可求出的表示.【详解】,,故本题选D.【点睛】本题考查了平面向量加法的几何意义,属于基础题.3.如果三棱锥S-ABC的底面是不等边三角形,侧面与底面所成的二面角都相等,且顶点S在底面的射影O在△ABC内,那么O是△ABC的(
)A.垂心
B.重心
C.外心
D.内心参考答案:D4.在程序设计中,要将两个数a=2011,b=2012交换,使得a=2012,b=2011,使用赋值语句正确的一组是(
)参考答案:B5.等比数列{a}中,a=512,公比q=,用表示它的前n项之积:,则中最大的是(
)A.T
B.T
C.T
D.T参考答案:C6.在边长为2的菱形ABCD中,,E是BC的中点,则A. B. C. D.9参考答案:D【分析】选取向量为基底,用基底表示,然后计算.【详解】由题意,,.故选D.【点睛】本题考查向量的数量积,平面向量的线性运算,解题关键是选取基底,把向量用基底表示.7.直线l1:x+4y-2=0与直线l2:2x-y+5=0的交点坐标为(
)
A、(-6,2)
B、(-2,1)
C、(2,0)
D、(2,9)参考答案:B8.已知函数的图象如图所示,则满足的关系是 (
)A.
B.C.
D.参考答案:A略9.定义在上的奇函数以5为周期,若,则在内,的解的最少个数是(
)A.3
B.4
C.5
D.7参考答案:D10.函数的图象可能是参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.设a>1,函数f(x)=logax在区间[a,2a]上的最大值与最小值之差为,则a=
.参考答案:4【考点】对数函数的单调性与特殊点;函数的最值及其几何意义.【分析】利用函数的单调性表示出函数的最大值和最小值,利用条件建立等量关系,解对数方程即可.【解答】解:∵a>1,函数f(x)=logax在区间[a,2a]上的最大值与最小值分别为loga2a,logaa=1,它们的差为,∴,a=4,故答案为412.已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SA⊥平面ABC,AB⊥BC且AB=BC=SA=,则球O的表面积是.参考答案:6π【考点】球的体积和表面积.【专题】计算题;方程思想;综合法;立体几何.【分析】根据题意,三棱锥S﹣ABC扩展为正方体,正方体的外接球的球心就是正方体体对角线的中点,求出正方体的对角线的长度,即可求解球的半径,从而可求三棱锥S﹣ABC的外接球的表面积.【解答】解:三棱锥S﹣ABC的所有顶点都在球O的表面上,SA⊥平面ABC,AB⊥BC,又SA=AB=BC=2,三棱锥扩展为正方体的外接球,外接球的直径就是正方体的对角线的长度,∴球的半径R==.球的表面积为:4πR2=4π?()2=6π.故答案为:6π.【点评】本题考查三棱锥S﹣ABC的外接球的表面积,解题的关键是确定三棱锥S﹣ABC的外接球的球心与半径.13.已知集合与集合,若是从到的映射则的值为_________________.参考答案:4略14.已知集合,则集合用列举法表示为 .参考答案:15.一箱苹果,4个4个地数,最后余下1个;5个5个地数,最后余下2个;9个9个地数,最后余下7个,这箱苹果至少有_____个参考答案:9716.在平面直角坐标系xOy中,过点P(5,3)作直线与圆相交于A,B两点,若OAOB,则直线的斜率为___________参考答案:或117.已知函数在上是奇函数,则当时,,则
参考答案:-2略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数.(I)当时,求不等式的解集;(II)若关于x的不等式有且仅有一个整数解,求正实数a的取值范围.参考答案:(I);(II),或【分析】(I)直接解不等式得解集;(II)对a分类讨论解不等式分析找到a满足的不等式,解不等式即得解.【详解】(I)当时,不等式为,不等式的解集为,所以不等式的解集为;(II)原不等式可化为,①当,即时,原不等式的解集为,不满足题意;②当,即时,,此时,所以;③当,即时,,所以只需,解得;综上所述,,或.【点睛】本题主要考查一元二次不等式的解法和解集,意在考查学生对这些知识的理解掌握水平和分析推理能力.19.已知向量=,且的夹角为120,求:(1)
(2)参考答案:20.(12分)已知函数y=f(x)满足:f(x+1)=x2+x+1.(1)求f(x)的解析式;(2)求f(x)在区间上的最大值与最小值.参考答案:考点: 二次函数在闭区间上的最值;函数解析式的求解及常用方法.专题: 函数的性质及应用.分析: (1)利用换元法直接求出结果(2)首先不函数变形成顶点式,进一步利用对称轴和定义域的关系求的结果.解答: (1)由f(x+1)=(x+1)2﹣x=(x+1)2﹣(x+1)﹣1得f(x)=x2﹣x+1(2)∵x∈,∴f(x)在上是减函数,在上是增函数又f(2)=3>f(0)=1∴.点评: 本题考查的知识要点:用换元法求函数的解析式,根据二次函数的对称轴与定义域的关系求最值.21.如图,在三棱锥S-ABC中,侧面SAB与侧面SAC均为边长为2的等边三角形,,O为BC中点.(1)证明:;(2)求点C到平面SAB的距离.参考答案:(1)见解析;(2)【分析】(1)由题设AB=AC=SB=SC=SA,连结OA,推导出SO⊥BC,SO⊥AO,由此能证明SO⊥平面ABC;(2)设点B到平面SAC的距离为h,由VS﹣BAC=VB﹣SAC,能求出点B到平面SAC的距离.【详解】(1)由题设,连结,为等腰直角三角形,所以,且,又为等腰三角形,故,且,从而.所以为直角三角形,.又.所以平面.(2)设B到平面SAC的距离为,则由(Ⅰ)知:三棱锥即∵为等腰直角三角形,且腰长为2.∴∴∴△SAC的面积为=△ABC面积为,∴,∴B到平面SAC的距离为【点睛】本题考查线面垂直的证明,考查点到平面距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、空间想象能力、运算求解能力,考查函数与方程思想、数形结合思想,是中档题.22.已知集合A={x|0<2x+a≤3},B={x|﹣<x<2}.(1)当a=1时,求(?RB)∪A;(2)若A?B,求实数a的取值范围.参考答案:【考点】交、并、补集的混合运算.【分析】(1)由题意求出A,由补集的运算求出?RB,由并集的运算求出(?RB)∪A;(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年合作检测协议范本新
- 港航实务 皮丹丹 教材精讲班课件 59-第2章-2.8-航道整治工程施工技术
- 2024年销售合同其一
- 2024年精装修租房合同简单
- 2024年假期守校合同协议书
- 2024年公司简单机械租赁合同模板
- 2024年全新美发店员工劳务合同
- 2024年保管合同示范文本
- 2024年话费托收协议书
- 2024年全新戒烟合同
- 当代世界经济与政治教案
- 化学品的爆炸性与防护措施
- 初中班主任班级管理方法
- 解一元一次方程-合并同类项
- 炊事知识讲座
- 企业运用贸易知识培训课件
- 智能制造系统的优化与控制
- 中国银联行业报告
- 《linux操作系统应用》课程标准
- 唐卡行业现状分析
- 2024食品安全法ppt培训课件全新
评论
0/150
提交评论