版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023中考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2﹣12x+k=0的两个根,则k的值是()A.27 B.36 C.27或36 D.182.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为,则原来盒里有白色棋子()A.1颗 B.2颗 C.3颗 D.4颗3.如图所示是8个完全相同的小正方体组成的几何体,则该几何体的左视图是()A. B.C. D.4.如果m的倒数是﹣1,那么m2018等于()A.1 B.﹣1 C.2018 D.﹣20185.如图是由一些相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体个数最多为()A.7 B.8 C.9 D.106.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,其顶点坐标为A(﹣1,﹣3),与x轴的一个交点为B(﹣3,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①abc>0;②不等式ax2+(b﹣m)x+c﹣n<0的解集为﹣3<x<﹣1;③抛物线与x轴的另一个交点是(3,0);④方程ax2+bx+c+3=0有两个相等的实数根;其中正确的是()A.①③ B.②③ C.③④ D.②④7.下列计算正确的是()A.x4•x4=x16B.(a+b)2=a2+b2C.16=±4D.(a6)2÷(a4)3=18.已知一次函数y=﹣x+2的图象,绕x轴上一点P(m,1)旋转181°,所得的图象经过(1.﹣1),则m的值为()A.﹣2 B.﹣1 C.1 D.29.已知二次函数(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程的两实数根是A.x1=1,x2=-1 B.x1=1,x2=2C.x1=1,x2=0 D.x1=1,x2=310.如图,已知△ABC,△DCE,△FEG,△HGI是4个全等的等腰三角形,底边BC,CE,EG,GI在同一直线上,且AB=2,BC=1.连接AI,交FG于点Q,则QI=()A.1 B. C. D.11.如图,直线AB、CD相交于点O,EO⊥CD,下列说法错误的是()A.∠AOD=∠BOC B.∠AOE+∠BOD=90°C.∠AOC=∠AOE D.∠AOD+∠BOD=180°12.在一张考卷上,小华写下如下结论,记正确的个数是m,错误的个数是n,你认为有公共顶点且相等的两个角是对顶角若,则它们互余A.4 B. C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,要使△ABC∽△ACD,需补充的条件是_____.(只要写出一种)14.如图所示,△ABC的顶点是正方形网格的格点,则sinA的值为____.15.如图,一根直立于水平地面的木杆AB在灯光下形成影子AC(AC>AB),当木杆绕点A按逆时针方向旋转,直至到达地面时,影子的长度发生变化.已知AE=5m,在旋转过程中,影长的最大值为5m,最小值3m,且影长最大时,木杆与光线垂直,则路灯EF的高度为_____m.16.如图,点A是直线y=﹣x与反比例函数y=的图象在第二象限内的交点,OA=4,则k的值为_____.17.分解因式:_____.18.不等式组的最大整数解为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)先化简,然后从-2≤x≤2的范围内选取一个合适的整数作为x的值代入求值.20.(6分)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6米的B处安置高为1.5米的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长(结果保留小数点后一位,参考数据:).21.(6分)小明准备用一块矩形材料剪出如图所示的四边形ABCD(阴影部分),做成要制作的飞机的一个机翼,请你根据图中的数据帮小明计算出CD的长度.(结果保留根号).22.(8分)如图所示,一幢楼房AB背后有一台阶CD,台阶每层高0.2米,且AC=17.2米,设太阳光线与水平地面的夹角为α,当α=60°时,测得楼房在地面上的影长AE=10米,现有一老人坐在MN这层台阶上晒太阳.(取1.73)(1)求楼房的高度约为多少米?(2)过了一会儿,当α=45°时,问老人能否还晒到太阳?请说明理由.23.(8分)定义:任意两个数a,b,按规则c=b2+ab﹣a+7扩充得到一个新数c,称所得的新数c为“如意数”.若a=2,b=﹣1,直接写出a,b的“如意数”c;如果a=3+m,b=m﹣2,试说明“如意数”c为非负数.24.(10分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书“,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本)频数(人数)频率5a0.26180.1714b880.16合计50c我们定义频率=,比如由表中我们可以知道在这次随机调查中抽样人数为50人课外阅读量为6本的同学为18人,因此这个人数对应的频率就是=0.1.(1)统计表中的a、b、c的值;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校八年级共有600名学生,你认为根据以上调查结果可以估算分析该校八年级学生课外阅读量为7本和8本的总人数为多少吗?请写出你的计算过程.25.(10分)如图,抛物线y=ax2+bx+c与x轴的交点分别为A(﹣6,0)和点B(4,0),与y轴的交点为C(0,3).(1)求抛物线的解析式;(2)点P是线段OA上一动点(不与点A重合),过P作平行于y轴的直线与AC交于点Q,点D、M在线段AB上,点N在线段AC上.①是否同时存在点D和点P,使得△APQ和△CDO全等,若存在,求点D的坐标,若不存在,请说明理由;②若∠DCB=∠CDB,CD是MN的垂直平分线,求点M的坐标.26.(12分)如图,在菱形ABCD中,作于E,BF⊥CD于F,求证:.27.(12分)有这样一个问题:探究函数y=﹣2x的图象与性质.小东根据学习函数的经验,对函数y=﹣2x的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数y=﹣2x的自变量x的取值范围是_______;(2)如表是y与x的几组对应值x…﹣4﹣3.5﹣3﹣2﹣101233.54…y…﹣﹣0﹣﹣m…则m的值为_______;(3)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)观察图象,写出该函数的两条性质________.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解析】试题分析:由于等腰三角形的一边长3为底或为腰不能确定,故应分两种情况进行讨论:(3)当3为腰时,其他两条边中必有一个为3,把x=3代入原方程可求出k的值,进而求出方程的另一个根,再根据三角形的三边关系判断是否符合题意即可;(3)当3为底时,则其他两条边相等,即方程有两个相等的实数根,由△=0可求出k的值,再求出方程的两个根进行判断即可.试题解析:分两种情况:(3)当其他两条边中有一个为3时,将x=3代入原方程,得:33-33×3+k=0解得:k=37将k=37代入原方程,得:x3-33x+37=0解得x=3或93,3,9不能组成三角形,不符合题意舍去;(3)当3为底时,则其他两边相等,即△=0,此时:344-4k=0解得:k=3将k=3代入原方程,得:x3-33x+3=0解得:x=63,6,6能够组成三角形,符合题意.故k的值为3.故选B.考点:3.等腰三角形的性质;3.一元二次方程的解.2、B【解析】试题解析:由题意得,解得:.故选B.3、A【解析】分析:根据主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形,从而得出该几何体的左视图.详解:该几何体的左视图是:故选A.点睛:本题考查了学生的思考能力和对几何体三种视图的空间想象能力.4、A【解析】
因为两个数相乘之积为1,则这两个数互为倒数,如果m的倒数是﹣1,则m=-1,然后再代入m2018计算即可.【详解】因为m的倒数是﹣1,所以m=-1,所以m2018=(-1)2018=1,故选A.【点睛】本题主要考查倒数的概念和乘方运算,解决本题的关键是要熟练掌握倒数的概念和乘方运算法则.5、C【解析】
主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】根据三视图知,该几何体中小正方体的分布情况如下图所示:所以组成这个几何体的小正方体个数最多为9个,故选C.【点睛】考查了三视图判定几何体,关键是对三视图灵活运用,体现了对空间想象能力的考查.6、D【解析】
①错误.由题意a>1.b>1,c<1,abc<1;
②正确.因为y1=ax2+bx+c(a≠1)图象与直线y2=mx+n(m≠1)交于A,B两点,当ax2+bx+c<mx+n时,-3<x<-1;即不等式ax2+(b-m)x+c-n<1的解集为-3<x<-1;故②正确;
③错误.抛物线与x轴的另一个交点是(1,1);
④正确.抛物线y1=ax2+bx+c(a≠1)图象与直线y=-3只有一个交点,方程ax2+bx+c+3=1有两个相等的实数根,故④正确.【详解】解:∵抛物线开口向上,∴a>1,
∵抛物线交y轴于负半轴,∴c<1,
∵对称轴在y轴左边,∴-<1,
∴b>1,
∴abc<1,故①错误.
∵y1=ax2+bx+c(a≠1)图象与直线y2=mx+n(m≠1)交于A,B两点,
当ax2+bx+c<mx+n时,-3<x<-1;
即不等式ax2+(b-m)x+c-n<1的解集为-3<x<-1;故②正确,
抛物线与x轴的另一个交点是(1,1),故③错误,
∵抛物线y1=ax2+bx+c(a≠1)图象与直线y=-3只有一个交点,
∴方程ax2+bx+c+3=1有两个相等的实数根,故④正确.
故选:D.【点睛】本题考查二次函数的性质、二次函数与不等式,二次函数与一元二次方程等知识,解题的关键是灵活运用所学知识解决问题,学会利用数形结合的思想解决问题.7、D【解析】试题分析:x4x4=x8(同底数幂相乘,底数不变,指数相加);(a+b)2=a2+b2+2ab(完全平方公式);(表示16的算术平方根取正号);(a6)考点:1、幂的运算;2、完全平方公式;3、算术平方根.8、C【解析】
根据题意得出旋转后的函数解析式为y=-x-1,然后根据解析式求得与x轴的交点坐标,结合点的坐标即可得出结论.【详解】∵一次函数y=﹣x+2的图象,绕x轴上一点P(m,1)旋转181°,所得的图象经过(1.﹣1),∴设旋转后的函数解析式为y=﹣x﹣1,在一次函数y=﹣x+2中,令y=1,则有﹣x+2=1,解得:x=4,即一次函数y=﹣x+2与x轴交点为(4,1).一次函数y=﹣x﹣1中,令y=1,则有﹣x﹣1=1,解得:x=﹣2,即一次函数y=﹣x﹣1与x轴交点为(﹣2,1).∴m==1,故选:C.【点睛】本题考查了一次函数图象与几何变换,解题的关键是求出旋转后的函数解析式.本题属于基础题,难度不大.9、B【解析】试题分析:∵二次函数(m为常数)的图象与x轴的一个交点为(1,0),∴.∴.故选B.10、D【解析】解:∵△ABC、△DCE、△FEG是三个全等的等腰三角形,∴HI=AB=2,GI=BC=1,BI=2BC=2,∴===,∴=.∵∠ABI=∠ABC,∴△ABI∽△CBA,∴=.∵AB=AC,∴AI=BI=2.∵∠ACB=∠FGE,∴AC∥FG,∴==,∴QI=AI=.故选D.点睛:本题主要考查了平行线分线段定理,以及三角形相似的判定,正确理解AB∥CD∥EF,AC∥DE∥FG是解题的关键.11、C【解析】
根据对顶角性质、邻补角定义及垂线的定义逐一判断可得.【详解】A、∠AOD与∠BOC是对顶角,所以∠AOD=∠BOC,此选项正确;B、由EO⊥CD知∠DOE=90°,所以∠AOE+∠BOD=90°,此选项正确;C、∠AOC与∠BOD是对顶角,所以∠AOC=∠BOD,此选项错误;D、∠AOD与∠BOD是邻补角,所以∠AOD+∠BOD=180°,此选项正确;故选C.【点睛】本题主要考查垂线、对顶角与邻补角,解题的关键是掌握对顶角性质、邻补角定义及垂线的定义.12、D【解析】
首先判断出四个结论的错误个数和正确个数,进而可得m、n的值,再计算出即可.【详解】解:有公共顶点且相等的两个角是对顶角,错误;
,正确;
,错误;
若,则它们互余,错误;
则,,
,
故选D.【点睛】此题主要考查了二次根式的乘除、对顶角、科学记数法、余角和负整数指数幂,关键是正确确定m、n的值.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、∠ACD=∠B或∠ADC=∠ACB或AD:AC=AC:AB【解析】试题分析:∵∠DAC=∠CAB∴当∠ACD=∠B或∠ADC=∠ACB或AD:AC=AC:AB时,△ABC∽△ACD.故答案为∠ACD=∠B或∠ADC=∠ACB或AD:AC=AC:AB.考点:1.相似三角形的判定;2.开放型.14、.【解析】
解:连接CE,∵根据图形可知DC=1,AD=3,AC=,BE=CE=,∠EBC=∠ECB=45°,∴CE⊥AB,∴sinA=,故答案为.考点:勾股定理;三角形的面积;锐角三角函数的定义.15、7.5【解析】试题解析:当旋转到达地面时,为最短影长,等于AB,∵最小值3m,∴AB=3m,∵影长最大时,木杆与光线垂直,即AC=5m,∴BC=4,又可得△CAB∽△CFE,∴∵AE=5m,∴解得:EF=7.5m.故答案为7.5.点睛:相似三角形的性质:相似三角形的对应边成比例.16、﹣4.【解析】
作AN⊥x轴于N,可设A(x,﹣x),在Rt△OAN中,由勾股定理得出方程,解方程求出x=﹣2,得出A(﹣2,2),即可求出k的值.【详解】解:作AN⊥x轴于N,如图所示:∵点A是直线y=﹣x与反比例函数y=的图象在第二象限内的交点,∴可设A(x,﹣x)(x<0),在Rt△OAN中,由勾股定理得:x2+(﹣x)2=42,解得:x=﹣2,∴A(﹣2,2),代入y=得:k=﹣2×2=﹣4;故答案为﹣4.【点睛】本题考查了反比例函数与一次函数的图象得交点、勾股定理、反比例函数解析式的求法;求出点A的坐标是解决问题的关键.17、【解析】分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式2后继续应用完全平方公式分解即可:.18、﹣1.【解析】
分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,从而得出其最大整数解.【详解】,解不等式①得:x≤1,解不等式②得x-1>1x,x-1x>1,-x>1,x<-1,∴
不等式组的解集为x<-1,∴
不等式组的最大整数解为-1.故答案为-1.【点睛】本题考查了一元一次不等式组的整数解,解题的关键是熟练的掌握一元一次不等式组的整数解.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、,当x=0时,原式=(或:当x=-1时,原式=).【解析】
先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.【详解】解:原式=×=.x满足﹣1≤x≤1且为整数,若使分式有意义,x只能取0,﹣1.当x=0时,原式=﹣(或:当x=﹣1时,原式=).【点睛】本题考查分式的化简求值,化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.20、5.7米.【解析】试题分析:由题意,过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.试题解析:解:如答图,过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6.在Rt△ACH中,CH=AH•tan∠CAH=6tan30°=6×,∵DH=1.5,∴CD=+1.5.在Rt△CDE中,∵∠CED=60°,∴CE=(米).答:拉线CE的长约为5.7米.考点:1.解直角三角形的应用(仰角俯角问题);2.锐角三角函数定义;3.特殊角的三角函数值;4.矩形的判定和性质.21、CD的长度为17﹣17cm.【解析】
在直角三角形中用三角函数求出FD,BE的长,而FC=AE=AB+BE,而CD=FC-FD,从而得到答案.【详解】解:由题意,在Rt△BEC中,∠E=90°,∠EBC=60°,∴∠BCE=30°,tan30°=,∴BE=ECtan30°=51×=17(cm);∴CF=AE=34+BE=(34+17)cm,在Rt△AFD中,∠FAD=45°,∴∠FDA=45°,∴DF=AF=EC=51cm,则CD=FC﹣FD=34+17﹣51=17﹣17,答:CD的长度为17﹣17cm.【点睛】本题主要考查了在直角三角形中三角函数的应用,解本题的要点在于求出FC与FD的长度,即可求出答案.22、(1)楼房的高度约为17.3米;(2)当α=45°时,老人仍可以晒到太阳.理由见解析.【解析】试题分析:(1)在Rt△ABE中,根据的正切值即可求得楼高;(2)当时,从点B射下的光线与地面AD的交点为F,与MC的交点为点H.可求得AF=AB=17.3米,又因CF=CH=17.3-17.2=0.1米,CM=0.2,所以大楼的影子落在台阶MC这个侧面上.即小猫仍可晒到太阳.试题解析:解:(1)当当时,在Rt△ABE中,∵,∴BA=10tan60°=米.即楼房的高度约为17.3米.当时,小猫仍可晒到太阳.理由如下:假设没有台阶,当时,从点B射下的光线与地面AD的交点为F,与MC的交点为点H.∵∠BFA=45°,∴,此时的影长AF=BA=17.3米,所以CF=AF-AC=17.3-17.2=0.1.∴CH=CF=0.1米,∴大楼的影子落在台阶MC这个侧面上.∴小猫仍可晒到太阳.考点:解直角三角形.23、(1)4;(2)详见解析.【解析】
(1)本题是一道自定义运算题型,根据题中给的如意数的概念,代入即可得出结果(2)根据如意数的定义,求出代数式,分析取值范围即可.【详解】解:(1)∵a=2,b=﹣1∴c=b2+ab﹣a+7=1+(﹣2)﹣2+7=4(2)∵a=3+m,b=m﹣2∴c=b2+ab﹣a+7=(m﹣2)2+(3+m)(m﹣2)﹣(3+m)+7=2m2﹣4m+2=2(m﹣1)2∵(m﹣1)2≥0∴“如意数”c为非负数【点睛】本题考查了因式分解,完全平方式(m﹣1)2的非负性,难度不大.24、(1)10、0.28、1;(2)见解析;(3)6.4本;(4)264名;【解析】
(1)根据百分比=计算即可;(2)求出a组人数,画出直方图即可;(3)根据平均数的定义计算即可;(4)利用样本估计总体的思想解决问题即可;【详解】(1)a=50×0.2=10、b=14÷50=0.28、c=50÷50=1;(2)补全图形如下:(3)所有被调查学生课外阅读的平均本数==6.4(本)(4)该校八年级共有600名学生,该校八年级学生课外阅读7本和8本的总人数有600×=264(名).【点睛】本题考查频数分布直方图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.25、(1)y=﹣x2﹣x+3;(2)①点D坐标为(﹣,0);②点M(,0).【解析】
(1)应用待定系数法问题可解;(2)①通
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 产品保修合同
- 大型美食城招商合同范本
- 商住楼物业管理合同
- 汽车维修合同书范本
- 锅炉工合同书
- 我要出租房屋租赁合同范本
- 室内场景识别定位约束条件下的手机实例化AR方法研究
- 2025年外研版三年级起点七年级历史下册阶段测试试卷含答案
- 2025年浙教新版九年级历史下册阶段测试试卷含答案
- 2025年粤人版选修二地理上册阶段测试试卷
- 篮球俱乐部合伙协议
- 电力基建复工安全教育培训
- 2018注册环保工程师考试公共基础真题及答案
- 劳务经纪人培训
- 如何提高售后服务的快速响应能力
- 成人氧气吸入疗法-中华护理学会团体标准
- Unit-3-Reading-and-thinking课文详解课件-高中英语人教版必修第二册
- 高数(大一上)期末试题及答案
- 婚介公司红娘管理制度
- 煤矿电气试验规程
- 物业客服培训课件PPT模板
评论
0/150
提交评论