版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高二数学月考试题第I卷(选择题)2023/10一、选择题(本题共10道小题,每小题5分,共50分)1.命题“”的否定为A. B.C. D.2.是的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件3.设m,n是两条不同的直线,α,β是两个不重合的平面,给出下列四个命题:①⇒n⊥α;②⇒m∥n;③⇒n⊥β;④⇒n∥α.其中正确命题的序号是() A.①④ B.②④ C.①③ D.②③4.如图,正方形O′A′B′C′的面积为4,它是水平放置的一个平面图形的直观图,则原图形的周长为() A. B. 16 C. 12 D. 5.对于任意的直线l与平面α,在平面α内必有直线m,使m与l() A. 平行 B. 相交 C. 垂直 D. 互为异面直线6.自二面角α﹣l﹣β的棱l上任选一点O,若∠AOB是二面角α﹣l﹣β的平面角,必须具备条件() A. AO⊥OB,AO⊂α,BO⊂β B. AO⊥l,BO⊥l C. AB⊥l,AO⊂α,BO⊂β D. AO⊥l,OB⊥l,AO⊂α,BO⊂β7.点B是点A(1,2,3)在坐标平面yOz内的正投影,则|OB|等于() A. B. C. D. 8.已知平面的法向量为,点不在内,则直线与平面的位置关系为A.B.C.与相交不垂直 D.9.给出如下四个命题:①若“p∨q”为真命题,则p、q均为真命题;②“若a>b,则2a>2b﹣1”的否命题为“若a≤b,则2a≤2b﹣1”;③“∀x∈R,x2+x≥1”的否定是“∃x0∈R,x02+x0≤1”;④“x>0”是“x+≥2”的充要条件.其中不正确的命题是() A.①② B.②③ C.①③ D.③④10.已知A(4,1,3),B(2,3,1),C(3,7,-5),点P(x,-1,3)在平面ABC内,则x的值为()A.-4 B.1 C.10 D.11第II卷(非选择题)二、填空题(本题共5道小题,每小题5分,共25分)11.从一个棱长为1的正方体中切去一部分,得到一个几何体,其三视图如图,则该几何体的体积为.12.在大小为60°的二面角α﹣1﹣β中,已知AB⊂α,CD⊂β,且AB⊥l于B,CD⊥l于D,若AB=CD=1,BD=2,则AC的长为.13.已知平面的法向量是,平面的法向量是,若,则的值是--------------------.14.已知直线⊥平面,直线m平面,有下面四个命题:①∥⊥m;②⊥∥m;③∥m⊥;④⊥m∥其中正确命题序号是________.15.已知空间四边形OABC,如图所示,其对角线为OB,AC.M,N分别为OA,BC的中点,点G在线段MN上,且,现用基向量表示向量,并设,则______.三、解答题(本题共6道小题,共75分,解答需写出必要的文字说明及推演步骤)16.(本小题满分12分)已知,若是充分而不必要条件,求实数的取值范围.17.(本小题满分12分)已知命题P:函数在定义域上单调递增;命题Q:不等式对任意实数恒成立,若P、Q都是真命题,求实数的取值范围.18.(本小题满分12分)如图所示,四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,M、N分别是AB、PC的中点,PA=AD=a.(1)求证:MN∥平面PAD;(2)求证:平面PMC⊥平面PCD.19.(本题满分12分)如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=BB1,直线B1C与平面ABC成30°角.(I)求证:平面B1AC⊥平面ABB1A1;(II)求直线A1C与平面B1AC所成角的正弦值.20.(本题满分13分)如图,四棱锥的底面是正方形,侧棱⊥底面,,是的中点.(Ⅰ)证明://平面;(Ⅱ)求二面角的平面角的余弦值;(Ⅲ)在棱上是否存在点,使⊥平面?证明你的结论.21.(本小题满分14分)如图所示,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,E为AD的中点,PA=PD=4,BC=eq\f(1,2)AD=2,CD=.(Ⅰ)求证:PA⊥CD;(Ⅱ)若M是棱PC的中点,求直线PB与平面BEM所成角的正弦值;(Ⅲ)在棱PC上是否存在点N,使二面角N-EB-C的余弦值为,若存在,确定点N的位置;若不存在,请说明理由.高二数学试卷答案2023.10.1.C2.B3.C4.B5.C6.D7.B8.D9.C10.D11.12.13.614.①③15.16.由题意p:∴∴:(4分)q:∴:(8分)又∵是充分而不必要条件∴∴(12分)17.∵命题P函数在定义域上单调递增;∴a>1……………3分 又∵命题Q不等式对任意实数恒成立;∴………5分 或,………8分 即……………10分∵P、Q都是真命题,∴的取值范围是1<a…………12分18.解答: 证明:(1)设PD的中点为E,连接AE、NE,由N为PC的中点知ENDC,又ABCD是矩形,∴DCAB,∴ENAB又M是AB的中点,∴ENAM,∴AMNE是平行四边形∴MN∥AE,而AE⊂平面PAD,NM⊄平面PAD∴MN∥平面PAD-------------------6分证明:(2)∵PA=AD,∴AE⊥PD,又∵PA⊥平面ABCD,CD⊂平面ABCD,∴CD⊥PA,而CD⊥AD,∴CD⊥平面PAD∴CD⊥AE,∵PD∩CD=D,∴AE⊥平面PCD,∵MN∥AE,∴MN⊥平面PCD,又MN⊂平面PMC,∴平面PMC⊥平面PCD.---------------------12分19. 解:(I)证明:由直三棱柱性质,B1B⊥平面ABC,∴B1B⊥AC,又BA⊥AC,B1B∩BA=B,∴AC⊥平面ABB1A1,又AC⊂平面B1AC,∴平面B1AC⊥平面ABB1A1.---------------5分(II)解:过A1做A1M⊥B1A1,垂足为M,连接CM,∵平面B1AC⊥平面ABB1A,且平面B1AC∩平面ABB1A1=B1A,∴A1M⊥平面B1AC.∴∠A1CM为直线A1C与平面B1AC所成的角,∵直线B1C与平面ABC成30°角,∴∠B1CB=30°.设AB=BB1=a,可得B1C=2a,BC=,∴直线A1C与平面B1AC所成角的正弦值为------------------12分20.解:法一:(Ⅰ)以为坐标原点,分别以、、所在直线为轴、轴、轴建立空间直角坐标系,设,则,,,设是平面BDE的一个法向量,则由,得取,得. ∵,---4分(Ⅱ)由(Ⅰ)知是平面BDE的一个法向量,又是平面的一个法向量.设二面角的平面角为,由图可知∴.故二面角的余弦值为. ---------8分(Ⅲ)∵∴假设棱上存在点,使⊥平面,设,则,由得∴即在棱上存在点,,使得⊥平面.--------13分法二:(Ⅰ)连接,交于,连接.在中,为中位线,,//平面.(Ⅱ)⊥底面,平面⊥底面,为交线,⊥平面⊥平面,为交线,=,是的中点⊥⊥平面,⊥即为二面角的平面角.设,在中,故二面角的余弦值为(Ⅲ)由(Ⅱ)可知⊥平面,所以⊥,所以在平面内过作⊥,连EF,则⊥平面.在中,,,,.所以在棱上存在点,,使得⊥平面21.(1)面面等腰中,为的中点,面又在面内的射影是,由三垂线定理
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年建材市场商铺租赁及品牌展示合同2篇
- 二零二五版A4一页纸环保印刷定制合同2篇
- 二零二五年度活动板房租赁合同(含消防设施及安全检查)3篇
- 二零二五版城市绿化带基站场地租赁与景观融合合同3篇
- 二零二五版办公室能源管理合同3篇
- 二零二五年度高性能1号不锈钢驳接爪批量采购供货合同2篇
- 二零二五版企业清算注销及员工安置及补偿及债务清理合同3篇
- 二零二五版金融资产抵押交易合同范本3篇
- 二零二五版古建筑修复工程劳务承包施工合同2篇
- 二零二五版钢材现货及期货交易合同示范文本3篇
- 2024质量管理理解、评价和改进组织的质量文化指南
- 手指外伤后护理查房
- 油气回收相关理论知识考试试题及答案
- 我能作业更细心(课件)-小学生主题班会二年级
- 2023年湖北省武汉市高考数学一模试卷及答案解析
- 城市轨道交通的网络安全与数据保护
- 英国足球文化课件
- 《行政职业能力测验》2023年公务员考试新疆维吾尔新疆生产建设兵团可克达拉市预测试题含解析
- 医院投诉案例分析及处理要点
- 烫伤的安全知识讲座
- 工程变更、工程量签证、结算以及零星项目预算程序实施细则(试行)
评论
0/150
提交评论