高中数学知识点整理(苏教版)_第1页
高中数学知识点整理(苏教版)_第2页
高中数学知识点整理(苏教版)_第3页
高中数学知识点整理(苏教版)_第4页
高中数学知识点整理(苏教版)_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一讲集合一、知识精点讲解1.集合:某些指定的对象集在一起成为集合。(1)集合中的对象称元素,若a是集合A的元素,记作;若b不是集合A的元素,记作;(2)集合中的元素必须满足:确定性、互异性与无序性;确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立;互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素;无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关;(3)表示一个集合可用列举法、描述法或图示法;列举法:把集合中的元素一一列举出来,写在大括号内;描述法:把集合中的元素的公共属性描述出来,写在大括号内。具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。(4)常用数集及其记法:非负整数集(或自然数集),记作N;正整数集,记作N*或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R。2.集合的包含关系:(1)集合A的任何一个元素都是集合B的元素,则称A是B的子集(或B包含A),记作AB(或);集合相等:构成两个集合的元素完全一样。若AB且BA,则称A等于B,记作AB;若AB且A≠B,则称A是B的真子集,记作AB;(2)简单性质:1)AA;2)A;3)若AB,BC,则AC;4)若集合A是n个元素的集合,则集合A有2n个子集(其中2n-1个真子集);3.全集与补集:(1)包含了我们所要研究的各个集合的全部元素的集合称为全集,记作U;(2)若S是一个集合,AS,则,称S中子集A的补集;4.交集与并集:(1)一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集。交集。(2)一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集。。注意:求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法。第二讲函数概念与表示一、知识精点讲解1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数fx和它对应,那么就称f:A→B为从集合A到集合B的一个函数。记作:yfx,x∈A。其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合fx|x∈A叫做函数的值域。注意:(1)“yfx”是函数符号,可以用任意的字母表示,如“ygx”;(2)函数符号“yfx”中的fx表示与x对应的函数值,一个数,而不是f乘x。2.构成函数的三要素:定义域、对应关系和值域(1)解决一切函数问题必须认真确定该函数的定义域,函数的定义域包含三种形式:①自然型:指函数的解析式有意义的自变量x的取值范围(如:分式函数的分母不为零,偶次根式函数的被开方数为非负数,对数函数的真数为正数,等等);②限制型:指命题的条件或人为对自变量x的限制,这是函数学习中重点,往往也是难点,因为有时这种限制比较隐蔽,容易犯错误;③实际型:解决函数的综合问题与应用问题时,应认真考察自变量x的实际意义。(2)求函数的值域是比较困难的数学问题,中学数学要求能用初等方法求一些简单函数的值域问题。①配方法(将函数转化为二次函数);②判别式法(将函数转化为二次方程);③不等式法(运用不等式的各种性质);④函数法(运用基本函数性质,或抓住函数的单调性、函数图象等)。3.两个函数的相等:函数的定义含有三个要素,即定义域A、值域C和对应法则f。当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数。4.区间:区间的分类:开区间、闭区间、半开半闭区间;5.映射的概念一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作“f:AB”。函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的元素之间的对应关系,这种的对应就叫映射。注意:(1)这两个集合有先后顺序,A到B的射与B到A的映射是截然不同的.其中f表示具体的对应法则,可以用汉字叙述。(2)“都有唯一”什么意思?包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思。6.常用的函数表示法:(1)解析法:(2)列表法:(3)图象法:7.分段函数若一个函数的定义域分成了若干个子区间,而每个子区间的解析式不同,这种函数又称分段函数;8.复合函数若yfu,ugx,xa,b,um,n,那么yf[gx]称为复合函数,u称为中间变量,它的取值范围是gx的值域。第三讲函数的基本性质一、要点精讲1.奇偶性(1)定义:如果对于函数fx定义域内的任意x都有f-x-fx,则称fx为奇函数;如果对于函数fx定义域内的任意x都有f-xfx,则称fx为偶函数。如果函数fx不具有上述性质,则fx不具有奇偶性.如果函数同时具有上述两条性质,则fx既是奇函数,又是偶函数。注意:函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称)。(2)利用定义判断函数奇偶性的格式步骤:首先确定函数的定义域,并判断其定义域是否关于原点对称;确定f-x与fx的关系;作出相应结论:若f-xfx或f-x-fx0,则fx是偶函数;若f-x-fx或f-x+fx0,则fx是奇函数。(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y轴对称;②设,的定义域分别是,那么在它们的公共定义域上:奇+奇奇,奇奇偶,偶+偶偶,偶偶偶,奇偶奇2.单调性(1)定义:一般地,设函数yfx的定义域为I, 如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1x2时,都有fx1fx2(fx1fx2),那么就说fx在区间D上是增函数(减函数);注意:函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;必须是对于区间D内的任意两个自变量x1,x2;当x1x2时,总有fx1fx2(2)如果函数yfx在某个区间上是增函数或是减函数,那么就说函数yfx在这一区间具有(严格的)单调性,区间D叫做yfx的单调区间。(3)设复合函数yf[gx],其中ugx,A是yf[gx]定义域的某个区间,B是映射g:x→ugx的象集:①若ugx在A上是增(或减)函数,yfu在B上也是增(或减)函数,则函数yf[gx]在A上是增函数;②若ugx在A上是增(或减)函数,而yfu在B上是减(或增)函数,则函数yf[gx]在A上是减函数。(4)判断函数单调性的方法步骤:任取x1,x2∈D,且x1x2;作差fx1-fx2;变形(通常是因式分解和配方);定号(即判断差fx1-fx2的正负);下结论(即指出函数fx在给定的区间D上的单调性)。(5)简单性质①奇函数在其对称区间上的单调性相同;②偶函数在其对称区间上的单调性相反;③在公共定义域内:增函数增函数是增函数;减函数减函数是减函数;增函数减函数是增函数;减函数增函数是减函数。3.最值(1)定义:最大值:一般地,设函数yfx的定义域为I,如果存在实数M满足:①对于任意的x∈I,都有fx≤M;②存在x0∈I,使得fx0M。那么,称M是函数yfx的最大值。最小值:一般地,设函数yfx的定义域为I,如果存在实数M满足:①对于任意的x∈I,都有fx≥M;②存在x0∈I,使得fx0M。那么,称M是函数yfx的最大值。注意:函数最大(小)首先应该是某一个函数值,即存在x0∈I,使得fx0M;函数最大(小)应该是所有函数值中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论