版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设分别是双曲线的左右焦点若双曲线上存在点,使,且,则双曲线的离心率为()A. B.2 C. D.2.已知函数在上都存在导函数,对于任意的实数都有,当时,,若,则实数的取值范围是()A. B. C. D.3.已知正项等比数列中,存在两项,使得,,则的最小值是()A. B. C. D.4.在很多地铁的车厢里,顶部的扶手是一根漂亮的弯管,如下图所示.将弯管形状近似地看成是圆弧,已知弯管向外的最大突出(图中)有,跨接了6个坐位的宽度(),每个座位宽度为,估计弯管的长度,下面的结果中最接近真实值的是()A. B. C. D.5.下列函数中,图象关于轴对称的为()A. B.,C. D.6.若的展开式中的系数为-45,则实数的值为()A. B.2 C. D.7.设a,b,c为正数,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不修要条件8.将函数的图象向右平移个周期后,所得图象关于轴对称,则的最小正值是()A. B. C. D.9.已知幂函数的图象过点,且,,,则,,的大小关系为()A. B. C. D.10.一个几何体的三视图如图所示,则该几何体的体积为()A. B.C. D.11.若(1+2ai)i=1-bi,其中a,b∈R,则|a+bi|=().A. B. C. D.512.下列命题是真命题的是()A.若平面,,,满足,,则;B.命题:,,则:,;C.“命题为真”是“命题为真”的充分不必要条件;D.命题“若,则”的逆否命题为:“若,则”.二、填空题:本题共4小题,每小题5分,共20分。13.三棱柱中,,侧棱底面,且三棱柱的侧面积为.若该三棱柱的顶点都在同一个球的表面上,则球的表面积的最小值为_____.14.已知非零向量的夹角为,且,则______.15.平面向量,,(R),且与的夹角等于与的夹角,则.16.根据如图所示的伪代码,若输入的的值为2,则输出的的值为____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱柱中,平面,底面ABCD满足∥BC,且(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值.18.(12分)已知抛物线的顶点为原点,其焦点关于直线的对称点为,且.若点为的准线上的任意一点,过点作的两条切线,其中为切点.(1)求抛物线的方程;(2)求证:直线恒过定点,并求面积的最小值.19.(12分)已知椭圆的右顶点为,点在轴上,线段与椭圆的交点在第一象限,过点的直线与椭圆相切,且直线交轴于.设过点且平行于直线的直线交轴于点.(Ⅰ)当为线段的中点时,求直线的方程;(Ⅱ)记的面积为,的面积为,求的最小值.20.(12分)已知椭圆的中心在坐标原点,其短半轴长为,一个焦点坐标为,点在椭圆上,点在直线上的点,且.证明:直线与圆相切;求面积的最小值.21.(12分)P是圆上的动点,P点在x轴上的射影是D,点M满足.(1)求动点M的轨迹C的方程,并说明轨迹是什么图形;(2)过点的直线l与动点M的轨迹C交于不同的两点A,B,求以OA,OB为邻边的平行四边形OAEB的顶点E的轨迹方程.22.(10分)古人云:“腹有诗书气自华.”为响应全民阅读,建设书香中国,校园读书活动的热潮正在兴起.某校为统计学生一周课外读书的时间,从全校学生中随机抽取名学生进行问卷调査,统计了他们一周课外读书时间(单位:)的数据如下:一周课外读书时间/合计频数46101214244634频率0.020.030.050.060.070.120.250.171(1)根据表格中提供的数据,求,,的值并估算一周课外读书时间的中位数.(2)如果读书时间按,,分组,用分层抽样的方法从名学生中抽取20人.①求每层应抽取的人数;②若从,中抽出的学生中再随机选取2人,求这2人不在同一层的概率.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】
由及双曲线定义得和(用表示),然后由余弦定理得出的齐次等式后可得离心率.【详解】由题意∵,∴由双曲线定义得,从而得,,在中,由余弦定理得,化简得.故选:A.【点睛】本题考查求双曲线的离心率,解题关键是应用双曲线定义用表示出到两焦点的距离,再由余弦定理得出的齐次式.2.B【解析】
先构造函数,再利用函数奇偶性与单调性化简不等式,解得结果.【详解】令,则当时,,又,所以为偶函数,从而等价于,因此选B.【点睛】本题考查利用函数奇偶性与单调性求解不等式,考查综合分析求解能力,属中档题.3.C【解析】
由已知求出等比数列的公比,进而求出,尝试用基本不等式,但取不到等号,所以考虑直接取的值代入比较即可.【详解】,,或(舍).,,.当,时;当,时;当,时,,所以最小值为.故选:C.【点睛】本题考查等比数列通项公式基本量的计算及最小值,属于基础题.4.B【解析】
为弯管,为6个座位的宽度,利用勾股定理求出弧所在圆的半径为,从而可得弧所对的圆心角,再利用弧长公式即可求解.【详解】如图所示,为弯管,为6个座位的宽度,则设弧所在圆的半径为,则解得可以近似地认为,即于是,长所以是最接近的,其中选项A的长度比还小,不可能,因此只能选B,260或者由,所以弧长.故选:B【点睛】本题考查了弧长公式,需熟记公式,考查了学生的分析问题的能力,属于基础题.5.D【解析】
图象关于轴对称的函数为偶函数,用偶函数的定义及性质对选项进行判断可解.【详解】图象关于轴对称的函数为偶函数;A中,,,故为奇函数;B中,的定义域为,不关于原点对称,故为非奇非偶函数;C中,由正弦函数性质可知,为奇函数;D中,且,,故为偶函数.故选:D.【点睛】本题考查判断函数奇偶性.判断函数奇偶性的两种方法:(1)定义法:对于函数的定义域内任意一个都有,则函数是奇函数;都有,则函数是偶函数(2)图象法:函数是奇(偶)函数函数图象关于原点(轴)对称.6.D【解析】
将多项式的乘法式展开,结合二项式定理展开式通项,即可求得的值.【详解】∵所以展开式中的系数为,∴解得.故选:D.【点睛】本题考查了二项式定理展开式通项的简单应用,指定项系数的求法,属于基础题.7.B【解析】
根据不等式的性质,结合充分条件和必要条件的定义进行判断即可.【详解】解:,,为正数,当,,时,满足,但不成立,即充分性不成立,若,则,即,即,即,成立,即必要性成立,则“”是“”的必要不充分条件,故选:.【点睛】本题主要考查充分条件和必要条件的判断,结合不等式的性质是解决本题的关键.8.D【解析】
由函数的图象平移变换公式求出变换后的函数解析式,再利用诱导公式得到关于的方程,对赋值即可求解.【详解】由题意知,函数的最小正周期为,即,由函数的图象平移变换公式可得,将函数的图象向右平移个周期后的解析式为,因为函数的图象关于轴对称,所以,即,所以当时,有最小正值为.故选:D【点睛】本题考查函数的图象平移变换公式和三角函数诱导公式及正余弦函数的性质;熟练掌握诱导公式和正余弦函数的性质是求解本题的关键;属于中档题、常考题型.9.A【解析】
根据题意求得参数,根据对数的运算性质,以及对数函数的单调性即可判断.【详解】依题意,得,故,故,,,则.故选:A.【点睛】本题考查利用指数函数和对数函数的单调性比较大小,考查推理论证能力,属基础题.10.A【解析】
根据题意,可得几何体,利用体积计算即可.【详解】由题意,该几何体如图所示:该几何体的体积.故选:A.【点睛】本题考查了常见几何体的三视图和体积计算,属于基础题.11.C【解析】试题分析:由已知,-2a+i=1-bi,根据复数相等的充要条件,有a=-,b=-1所以|a+bi|=,选C考点:复数的代数运算,复数相等的充要条件,复数的模12.D【解析】
根据面面关系判断A;根据否定的定义判断B;根据充分条件,必要条件的定义判断C;根据逆否命题的定义判断D.【详解】若平面,,,满足,,则可能相交,故A错误;命题“:,”的否定为:,,故B错误;为真,说明至少一个为真命题,则不能推出为真;为真,说明都为真命题,则为真,所以“命题为真”是“命题为真”的必要不充分条件,故C错误;命题“若,则”的逆否命题为:“若,则”,故D正确;故选D【点睛】本题主要考查了判断必要不充分条件,写出命题的逆否命题等,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
分析题意可知,三棱柱为正三棱柱,所以三棱柱的中心即为外接球的球心,设棱柱的底面边长为,高为,则三棱柱的侧面积为,球的半径表示为,再由重要不等式即可得球表面积的最小值【详解】如下图,∵三棱柱为正三棱柱∴设,∴三棱柱的侧面积为∴又外接球半径∴外接球表面积.故答案为:【点睛】考查学生对几何体的正确认识,能通过题意了解到题目传达的意思,培养学生空间想象力,能够利用题目条件,画出图形,寻找外接球的球心以及半径,属于中档题14.1【解析】
由已知条件得出,可得,解之可得答案.【详解】向量的夹角为,且,,可得:,
可得,
解得,
故答案为:1.【点睛】本题考查根据向量的数量积运算求向量的模,关键在于将所求的向量的模平方,利用向量的数量积化简求解即可,属于基础题.15.2【解析】试题分析:,与的夹角等于与的夹角,所以考点:向量的坐标运算与向量夹角16.【解析】
满足条件执行,否则执行.【详解】本题实质是求分段函数在处的函数值,当时,.故答案为:1【点睛】本题考查条件语句的应用,此类题要做到读懂算法语句,本题是一道容易题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(Ⅰ)证明见解析;(Ⅱ)【解析】
(Ⅰ)证明,根据得到,得到证明.(Ⅱ)如图所示,分别以为轴建立空间直角坐标系,平面的法向量,,计算向量夹角得到答案.【详解】(Ⅰ)平面,平面,故.,,故,故.,故平面.(Ⅱ)如图所示:分别以为轴建立空间直角坐标系,则,,,,.设平面的法向量,则,即,取得到,,设直线与平面所成角为故.【点睛】本题考查了线面垂直,线面夹角,意在考查学生的空间想象能力和计算能力.18.(1)(2)见解析,最小值为4【解析】
(1)根据焦点到直线的距离列方程,求得的值,由此求得抛物线的方程.(2)设出的坐标,利用导数求得切线的方程,由此判断出直线恒过抛物线焦点.求得三角形面积的表达式,进而求得面积的最小值.【详解】(1)依题意,解得(负根舍去)∴抛物线的方程为(2)设点,由,即,得∴抛物线在点处的切线的方程为,即∵,∴∵点在切线上,①,同理,②综合①、②得,点的坐标都满足方程.即直线恒过抛物线焦点当时,此时,可知:当,此时直线直线的斜率为,得于是,而把直线代入中消去得,即:当时,最小,且最小值为4【点睛】本小题主要考查点到直线的距离公式,考查抛物线方程的求法,考查抛物线的切线方程的求法,考查直线过定点问题,考查抛物线中三角形面积的最值的求法,考查运算求解能力,属于难题.19.(Ⅰ)直线的方程为(Ⅱ)【解析】
(1)设点,利用中点坐标公式表示点B,并代入椭圆方程解得,从而求出直线的方程;(2)设直线的方程为:,表示点,然后联立方程,利用相切得出,然后求出切点,再设出设直线的方程,求出点,利用两点坐标,求出直线的方程,从而求出,最后利用以上已求点的坐标表示面积,根据基本不等式求最值即可.【详解】解:(Ⅰ)由椭圆,可得:由题意:设点,当为的中点时,可得:代入椭圆方程,可得:所以:所以.故直线的方程为.(Ⅱ)由题意,直线的斜率存在且不为0,故设直线的方程为:令,得:,所以:.联立:,消,整理得:.因为直线与椭圆相切,所以.即.设,则,,所以.又直线直线,所以设直线的方程为:.令,得,所以:.因为,所以直线的方程为:.令,得,所以:.所以.又因为..所以(当且仅当,即时等号成立)所以.【点睛】本小题主要考查直线和椭圆的位置关系,考查直线方程以及求椭圆中的最值问题,最值问题一般是把目标式求出,结合目标式特点选用合适的方法求解,侧重考查数学运算的核心素养,本题利用了基本不等式求最小值的方法,运算量较大,属于难题.20.证明见解析;1.【解析】
由题意可得椭圆的方程为,由点在直线上,且知的斜率必定存在,分类讨论当的斜率为时和斜率不为时的情况列出相应式子,即可得出直线与圆相切;由知,的面积为【详解】解:由题意,椭圆的焦点在轴上,且,所以.所以椭圆的方程为.由点在直线上,且知的斜率必定存在,当的斜率为时,,,于是,到的距离为,直线与圆相切.当的斜率不为时,设的方程为,与联立得,所以,,从而.而,故的方程为,而在上,故,从而,于是.此时,到的距离为,直线与圆相切.综上,直线与圆相切.由知,的面积为,上式中,当且仅当等号成立,所以面积的最小值为1.【点睛】本题主要考查直线与椭圆的位置关系、直线与圆的位置关系等基础知识,考查运算求解能力、推理论证能力和创新意识,考查化归与转化思想,属于难题.21.(1)点M的轨迹C的方程为,轨迹C是以,为焦点,长轴长为4的椭圆(2)【解析】
(1)设,根据可求得,代入圆的方程可得所求轨迹方程;根据轨迹方程可知轨迹是以,为焦点,长轴长为的椭圆;(2)设,与椭圆方程联立,利用求得;利用韦达定理表示出与,根据平行四边形和向量的坐标运算求得,消去后得到轨迹方程;根据求得的取值范围,进而得到最终结果.【详解】(1)设,则由知:点在圆上点的轨迹的方程为:轨迹是以,为焦点,长轴长为的椭圆(2)设,由题意知的斜率存在设,代入得:则,解得:设,,则四边形为平行四边形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 设计合同终止解除合同注意事项
- 别墅购销合同书
- 环保碳晶板采购合同
- 招标木门产品研发
- 大型建筑项目水泥砖采购合同
- 中介服务合同中的客户义务与责任
- 国外工程劳务分包合同的风险评估
- 承诺一生一世的好老公
- 样品采购合同的标准格式
- 服务外包合同协议范本案例示例
- 职业生涯规划军人
- 2024公基常识试题及答案解析(980题)
- 《新时代高职学生劳动教育》课程标准
- 《酒精性心肌病》
- 2023-2024学年成都市锦江区九年级上英语(一诊)期末考试题(含答案)
- 中医康复职业生涯规划
- 夜班人员的补贴和福利政策
- 河北省石家庄市长安区2023-2024学年五年级上学期期末语文试卷
- 2024年蜀道集团招聘笔试参考题库含答案解析
- 2023年12月2024年中国铁路成都局招考聘用高校毕业生924人(一)笔试历年高频考点(难、易错点)附答案详解
- 直播运营团队组织架构与各岗位职责研究
评论
0/150
提交评论